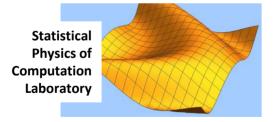
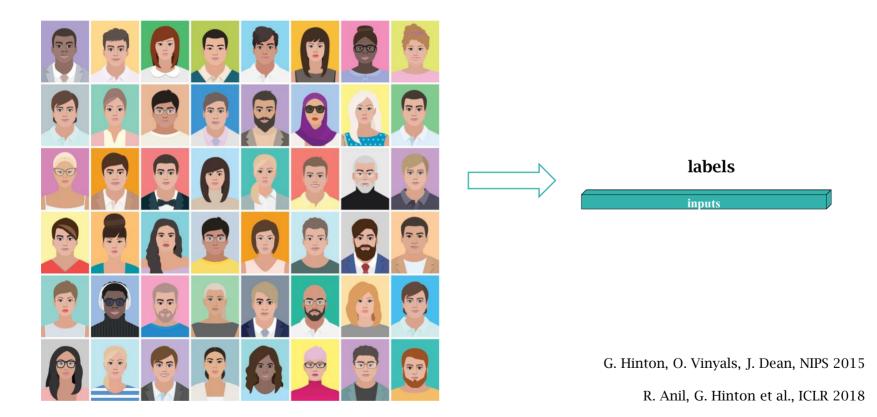
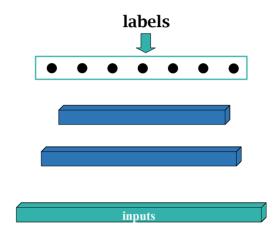
Inheriting regularization through Knowledge Distillation



Luca Saglietti, Lenka Zdeborová SPOC lab – EPFL

MSLS 2021

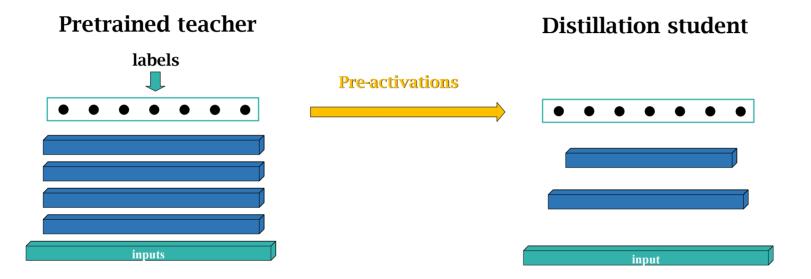




Small NN \rightarrow optimization harder \rightarrow **POOR GENERALIZATION**



Larger NN → optimization bias (**implicit regularization**) → **GOOD GENERALIZATION**



Larger NN \rightarrow optimization bias (**implicit regularization**) \rightarrow **GOOD GENERALIZATION**

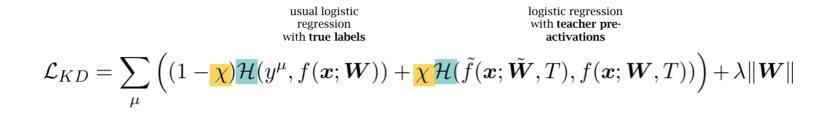
The **pre-activations** retain:

- **uncertainty** estimation
- relational information between categories
- **reweight** the training samples

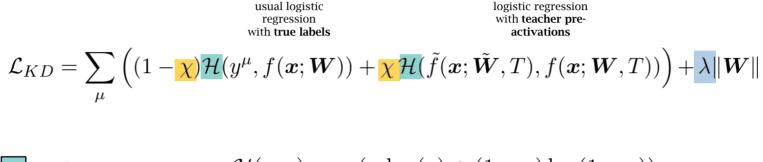
$$\mathcal{L}_{KD} = \sum_{\mu} \left((1 - \chi) \mathcal{H}(y^{\mu}, f(\boldsymbol{x}; \boldsymbol{W})) + \chi \mathcal{H}(\tilde{f}(\boldsymbol{x}; \tilde{\boldsymbol{W}}, T), f(\boldsymbol{x}; \boldsymbol{W}, T)) \right) + \lambda \| \boldsymbol{W} \|$$

$$\mathcal{L}_{KD} = \sum_{\mu} \left((1-\chi) \mathcal{H}(y^{\mu}, f(\boldsymbol{x}; \boldsymbol{W})) + \chi \mathcal{H}(\tilde{f}(\boldsymbol{x}; \tilde{\boldsymbol{W}}, T), f(\boldsymbol{x}; \boldsymbol{W}, T)) \right) + \lambda \|\boldsymbol{W}\|$$

Cross-entropy:
$$\mathcal{H}(y,p) = -(y \log(p) + (1-y) \log(1-p))$$



Cross-entropy:
$$\mathcal{H}(y,p) = -(y \log(p) + (1-y) \log(1-p))$$



Cross-entropy:
$$\mathcal{H}(y,p) = -(y \log(p) + (1-y) \log(1-p))$$

KD mixing parameter

Theory?

□> **2-level problem**:

a) pre-train teacher \tilde{W}

b) train student W

- → Step **a**) is **unaffected** by step **b**)
- \Box Both levels share the **training set**

□ 2-level problem:

a) pre-train teacher \tilde{W}

b) train student W

- → Step **a**) is **unaffected** by step **b**)
- \Box Both levels share the **training set**

Franz-Parisi potential formalism:

S. Franz and G. Parisi, PRL 1997

$$S_{FP} = \int d\tilde{\boldsymbol{W}} \frac{e^{-\tilde{\beta}\tilde{E}(\tilde{\boldsymbol{W}})}}{\tilde{Z}(\tilde{\beta})} \log \int d\boldsymbol{W} e^{-\beta E(\boldsymbol{W},\tilde{\boldsymbol{W}})}$$
$$E(\boldsymbol{W}, \xi = \{\boldsymbol{x}^{\mu}, y^{\mu}\}) = \sum_{\mu}^{\mu} \ell(\hat{y}(\boldsymbol{W}, \boldsymbol{x}^{\mu}), y^{\mu}) + \lambda \|\boldsymbol{W}\|$$

□ 2-level problem:

a) pre-train teacher \tilde{W}

b) train student W

- → Step **a**) is **unaffected** by step **b**)
- Both levels share the **training set**

Franz-Parisi potential formalism:

S. Franz and G. Parisi, PRL 1997

$$S_{FP} = \int d\tilde{\boldsymbol{W}} \frac{e^{-\tilde{\beta}\tilde{E}(\tilde{\boldsymbol{W}})}}{\tilde{Z}(\tilde{\beta})} \log \int d\boldsymbol{W} e^{-\beta E(\boldsymbol{W},\tilde{\boldsymbol{W}})}$$

□ 2-level problem:

a) pre-train teacher \tilde{W}

b) train student W

 \Rightarrow Both levels share the **training set**

Franz-Parisi potential formalism:

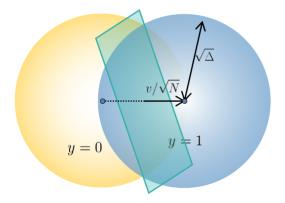
S. Franz and G. Parisi, PRL 1997

$$S_{FP} = \int d\tilde{\boldsymbol{W}} \frac{e^{-\tilde{\beta}\tilde{E}(\tilde{\boldsymbol{W}})}}{\tilde{Z}(\tilde{\beta})} \log \int d\boldsymbol{W} e^{-\beta E(\boldsymbol{W},\tilde{\boldsymbol{W}})}$$

---> Quenched and annealed disorder -> REPLICA METHOD

Data model: Isotropic Gaussian mixture (2 clusters, M points in dimension N)

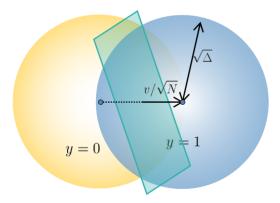
Learning model: L2-regularized **logistic regression**



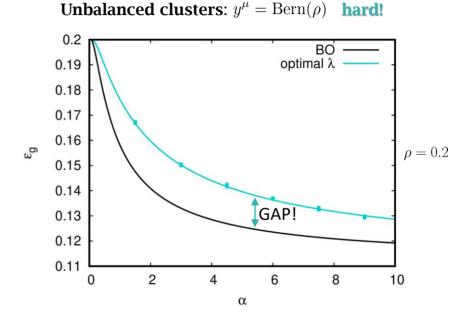
Data model: Isotropic Gaussian mixture (2 clusters, M points in dimension N)

Learning model: L2-regularized logistic regression

Asymptotic limit: $N, M \to \infty$ $M/N = \alpha$



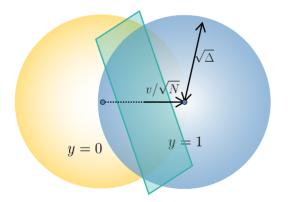
Tuning regularization intensity λ is key!!!



Data model: Isotropic Gaussian mixture (2 clusters, **M** points in dimension **N**)

Learning model: L2-regularized **logistic regression**

Asymptotic limit: $N, M \to \infty$ $M/N = \alpha$



Tuning regularization intensity λ is key!!!

F. Mignacco, F. Krzakala, Y. Lu, P. Urbani, L. Zdeborova. ICML, 2020

0.2 BO optimal λ 0.19 0.18 0.17 0.16 g 0.15 0.14 GAP! 0.13 0.12 0.11 2 10 6 8 0 4 α

Unbalanced clusters: $y^{\mu} = \text{Bern}(\rho)$ hard!

 $\rho = 0.2$

Teacher-student mismatch: weaker student model

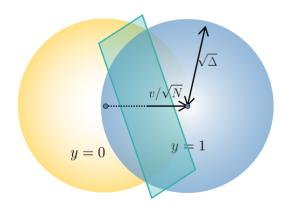
Fixed **student sparsity**: fraction η =0.5 of the weights are trained, the rest set to 0 a priori

F. Mignacco, F. Krzakala, Y. Lu, P. Urbani, L. Zdeborova. ICML, 2020

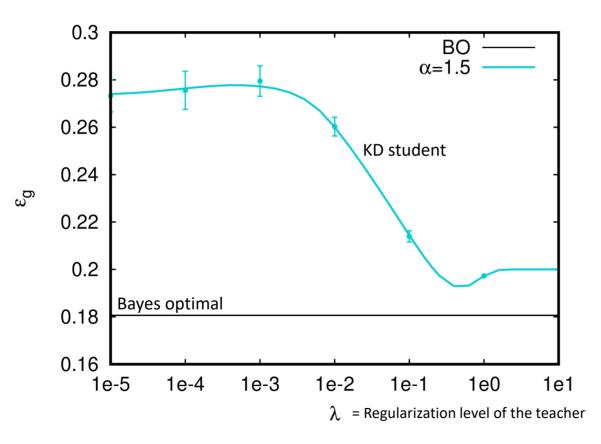
Data model: Isotropic Gaussian mixture (2 clusters, M points in dimension N)

Learning model: L2-regularized logistic regression

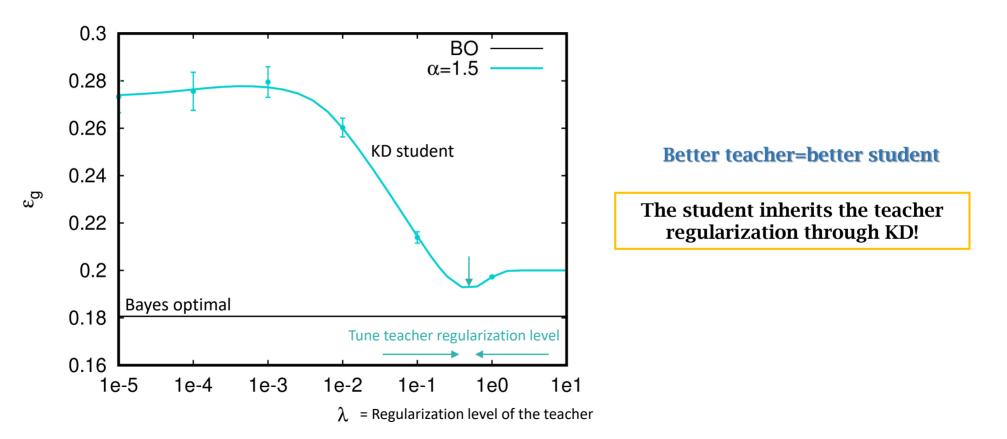
Asymptotic limit: $N, M \to \infty$ $M/N = \alpha$



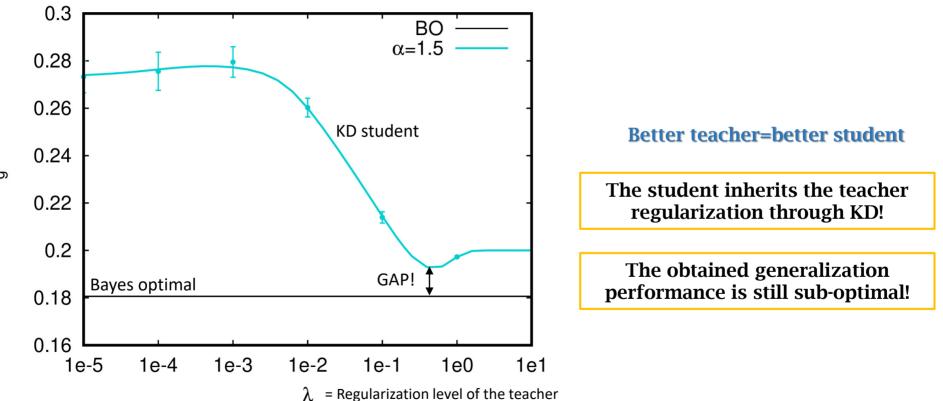
L₂-regularized logistic regression teacher: effect of KD loss on the student



L₂-regularized logistic regression teacher: effect of KD loss on the student



L₂-regularized logistic regression teacher: effect of KD loss on the student



βg

The KD student improves together with the teacher

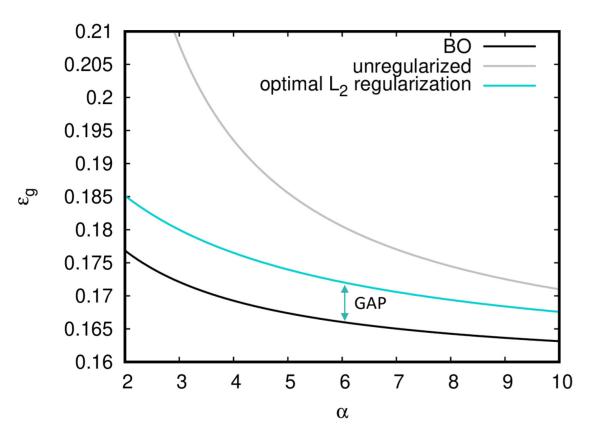
With a **sub-optimal teacher** the **student remains sub-optimal** (as the logistic regression estimator)

What if the teacher is **not just regularized "explicitly**"?

Is **KD still effective** in transferring the generalization properties?

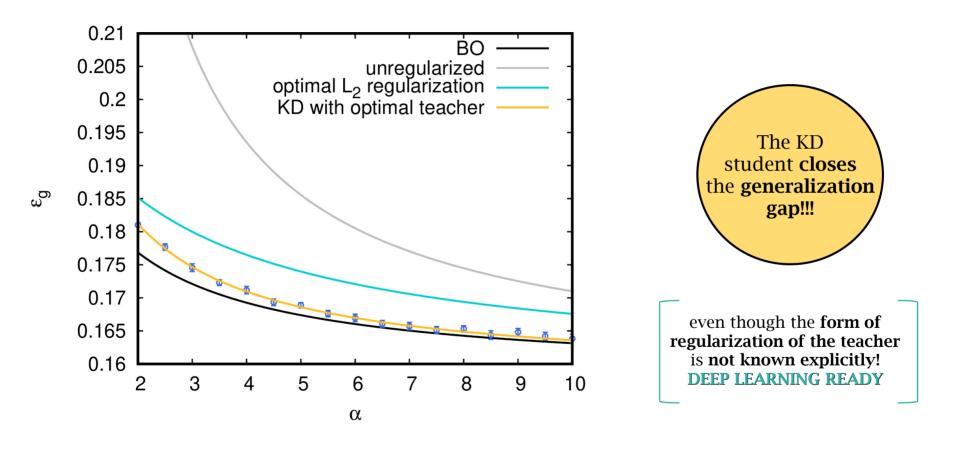
Bayes-Optimal teacher:

KD better than logistic regression?



Bayes-Optimal teacher:

KD better than logistic regression?



TAKE-HOME MESSAGE

With **Knowledge Distillation** the **student can inherit the teacher regularization** properties:

Cannot beat an explicit regularization of the same type!

TAKE-HOME MESSAGE

With **Knowledge Distillation** the **student can inherit the teacher regularization** properties:

Cannot beat an explicit regularization of the same type!

Achieve better generalization **even when** the **form of regularization of the teacher** is **not known explicitly DEEP LEARNING READY** :)

TAKE-HOME MESSAGE

With **Knowledge Distillation** the **student can inherit the teacher regularization** properties:

Cannot beat an explicit regularization of the same type!

Achieve better generalization **even when** the **form of regularization of the teacher** is **not known explicitly DEEP LEARNING READY** :)

Thank you for your attention!