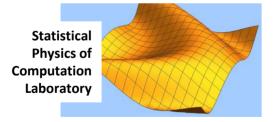
# Inheriting regularization through Knowledge Distillation

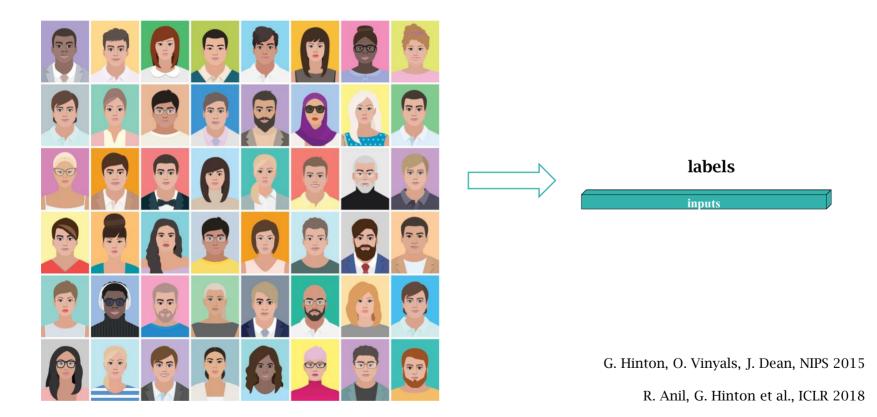


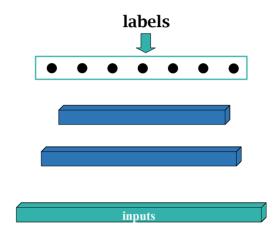


Luca Saglietti, Lenka Zdeborová SPOC lab – EPFL

**MSLS 2021** 



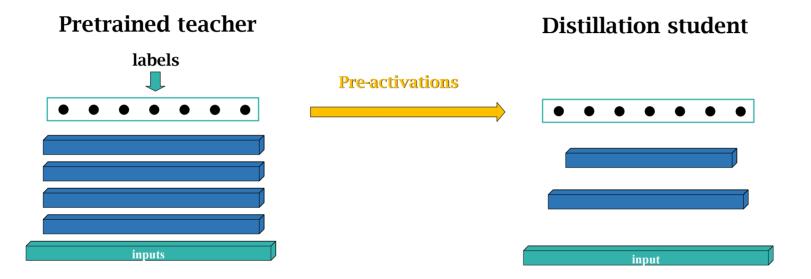




Small NN  $\rightarrow$  optimization harder  $\rightarrow$  **POOR GENERALIZATION** 



Larger NN → optimization bias (**implicit regularization**) → **GOOD GENERALIZATION** 



Larger NN  $\rightarrow$  optimization bias (**implicit regularization**)  $\rightarrow$  **GOOD GENERALIZATION** 

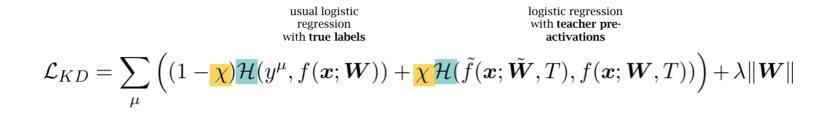
The **pre-activations** retain:

- **uncertainty** estimation
- relational information between categories
- **reweight** the training samples

$$\mathcal{L}_{KD} = \sum_{\mu} \left( (1 - \chi) \mathcal{H}(y^{\mu}, f(\boldsymbol{x}; \boldsymbol{W})) + \chi \mathcal{H}(\tilde{f}(\boldsymbol{x}; \tilde{\boldsymbol{W}}, T), f(\boldsymbol{x}; \boldsymbol{W}, T)) \right) + \lambda \| \boldsymbol{W} \|$$

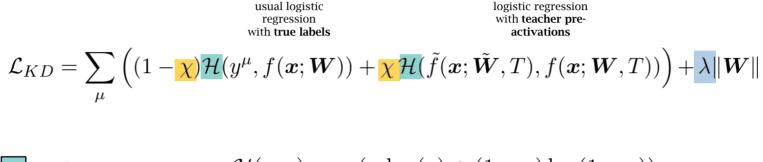
$$\mathcal{L}_{KD} = \sum_{\mu} \left( (1-\chi) \mathcal{H}(y^{\mu}, f(\boldsymbol{x}; \boldsymbol{W})) + \chi \mathcal{H}(\tilde{f}(\boldsymbol{x}; \tilde{\boldsymbol{W}}, T), f(\boldsymbol{x}; \boldsymbol{W}, T)) \right) + \lambda \|\boldsymbol{W}\|$$

Cross-entropy: 
$$\mathcal{H}(y,p) = -(y \log(p) + (1-y) \log(1-p))$$



Cross-entropy: 
$$\mathcal{H}(y,p) = -(y \log(p) + (1-y) \log(1-p))$$





Cross-entropy: 
$$\mathcal{H}(y,p) = -(y \log(p) + (1-y) \log(1-p))$$

KD mixing parameter



**Theory?** 

#### **□**> **2-level problem**:

**a) pre-train** teacher  $\tilde{W}$ 

**b) train** student W

- → Step **a**) is **unaffected** by step **b**)
- $\Box$  Both levels share the **training set**

#### **□ 2-level problem**:

**a) pre-train** teacher  $\tilde{W}$ 

**b) train** student W

- → Step **a**) is **unaffected** by step **b**)
- $\Box$  Both levels share the **training set**

Franz-Parisi potential formalism:

S. Franz and G. Parisi, PRL 1997

$$S_{FP} = \int d\tilde{\boldsymbol{W}} \frac{e^{-\tilde{\beta}\tilde{E}(\tilde{\boldsymbol{W}})}}{\tilde{Z}(\tilde{\beta})} \log \int d\boldsymbol{W} e^{-\beta E(\boldsymbol{W},\tilde{\boldsymbol{W}})}$$
$$E(\boldsymbol{W}, \xi = \{\boldsymbol{x}^{\mu}, y^{\mu}\}) = \sum_{\mu}^{\mu} \ell(\hat{y}(\boldsymbol{W}, \boldsymbol{x}^{\mu}), y^{\mu}) + \lambda \|\boldsymbol{W}\|$$

#### **□ 2-level problem**:

**a) pre-train** teacher  $\tilde{W}$ 

**b) train** student W

- → Step **a**) is **unaffected** by step **b**)
- Both levels share the **training set**

Franz-Parisi potential formalism:

S. Franz and G. Parisi, PRL 1997

$$S_{FP} = \int d\tilde{\boldsymbol{W}} \frac{e^{-\tilde{\beta}\tilde{E}(\tilde{\boldsymbol{W}})}}{\tilde{Z}(\tilde{\beta})} \log \int d\boldsymbol{W} e^{-\beta E(\boldsymbol{W},\tilde{\boldsymbol{W}})}$$

#### **□ 2-level problem**:

a) pre-train teacher  $\tilde{W}$ 

**b) train** student W



 $\Rightarrow$  Both levels share the **training set** 

Franz-Parisi potential formalism:

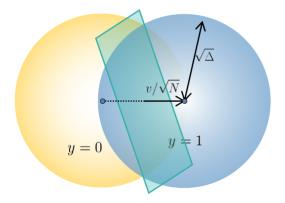
S. Franz and G. Parisi, PRL 1997

$$S_{FP} = \int d\tilde{\boldsymbol{W}} \frac{e^{-\tilde{\beta}\tilde{E}(\tilde{\boldsymbol{W}})}}{\tilde{Z}(\tilde{\beta})} \log \int d\boldsymbol{W} e^{-\beta E(\boldsymbol{W},\tilde{\boldsymbol{W}})}$$

---> Quenched and annealed disorder -> REPLICA METHOD

## **Data model: Isotropic Gaussian mixture** (2 clusters, M points in dimension N)

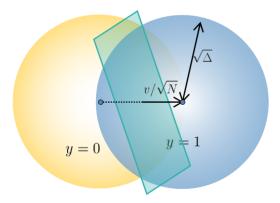
**Learning model**: L2-regularized **logistic regression** 



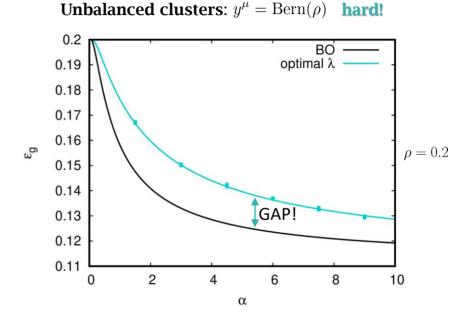
# **Data model: Isotropic Gaussian mixture** (2 clusters, M points in dimension N)

Learning model: L2-regularized logistic regression

**Asymptotic limit**:  $N, M \to \infty$   $M/N = \alpha$ 



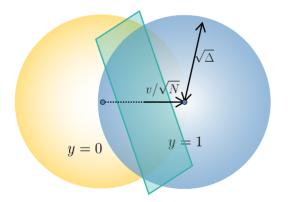
Tuning regularization intensity  $\lambda$  is key!!!



**Data model: Isotropic Gaussian mixture** (2 clusters, **M** points in dimension **N**)

**Learning model**: L2-regularized **logistic regression** 

**Asymptotic limit**:  $N, M \to \infty$   $M/N = \alpha$ 



Tuning regularization intensity  $\lambda$  is key!!!

F. Mignacco, F. Krzakala, Y. Lu, P. Urbani, L. Zdeborova. ICML, 2020

#### 0.2 BO optimal $\lambda$ 0.19 0.18 0.17 0.16 g 0.15 0.14 GAP! 0.13 0.12 0.11 2 10 6 8 0 4 α

**Unbalanced clusters:**  $y^{\mu} = \text{Bern}(\rho)$  hard!

 $\rho = 0.2$ 

Teacher-student mismatch: weaker student model

Fixed **student sparsity**: fraction  $\eta$ =0.5 of the weights are trained, the rest set to 0 a priori

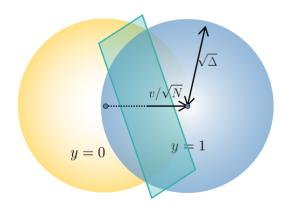
#### F. Mignacco, F. Krzakala, Y. Lu, P. Urbani, L. Zdeborova. ICML, 2020

Data model: Isotropic Gaussian mixture (2 clusters, M points in dimension N)

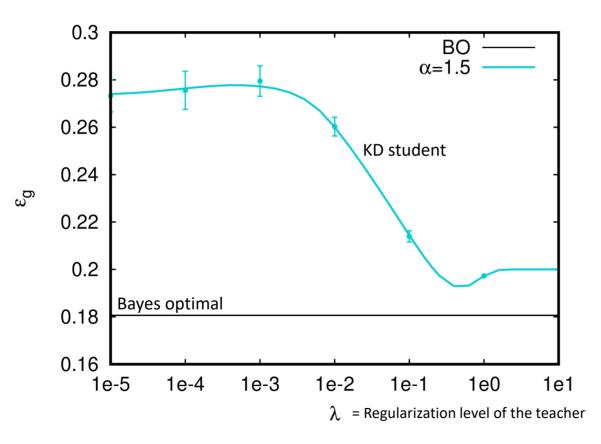
Learning model: L2-regularized logistic regression

**Asymptotic limit:**  $N, M \to \infty$   $M/N = \alpha$ 

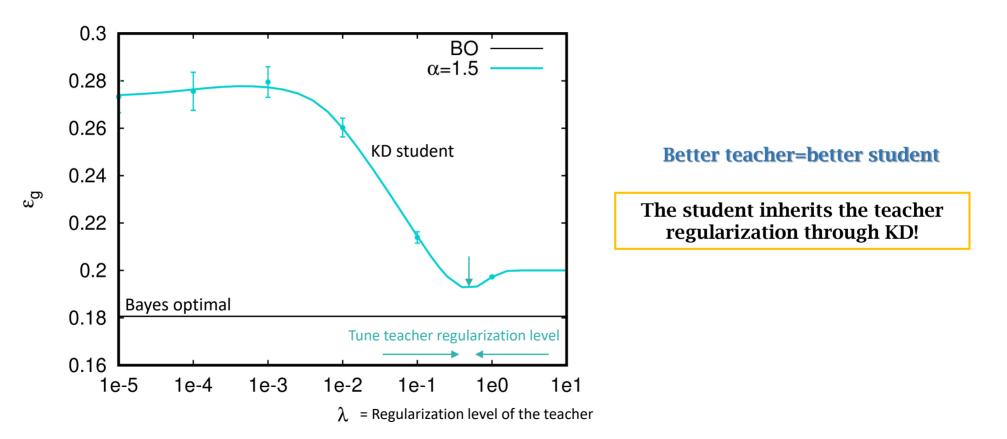




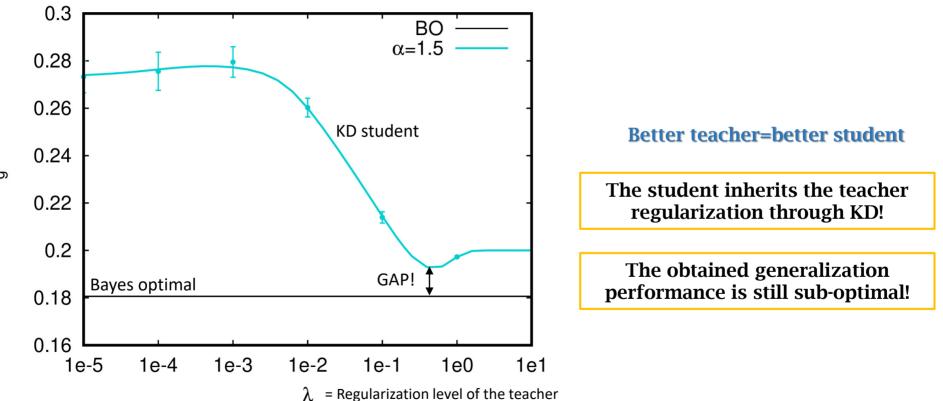
#### L<sub>2</sub>-regularized logistic regression teacher: effect of KD loss on the student



#### L<sub>2</sub>-regularized logistic regression teacher: effect of KD loss on the student



#### L<sub>2</sub>-regularized logistic regression teacher: effect of KD loss on the student



βg

The KD student improves together with the teacher

With a **sub-optimal teacher** the **student remains sub-optimal** (as the logistic regression estimator)

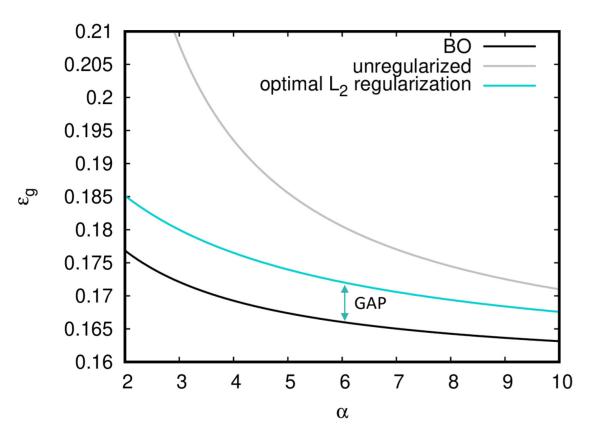


What if the teacher is **not just regularized "explicitly**"?

Is **KD still effective** in transferring the generalization properties?

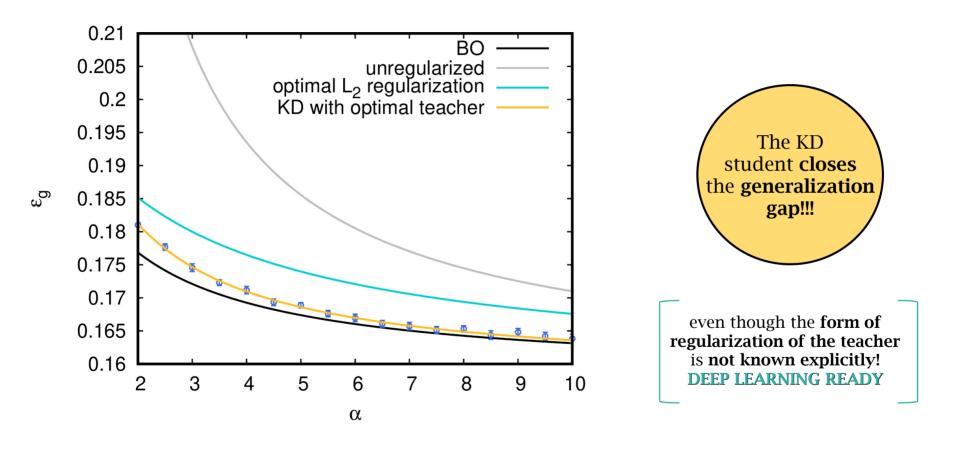
## Bayes-Optimal teacher:

**KD better than** logistic regression?



#### Bayes-Optimal teacher:

**KD better than** logistic regression?



#### **TAKE-HOME MESSAGE**

With **Knowledge Distillation** the **student can inherit the teacher regularization** properties:



Cannot beat an explicit regularization of the same type!

#### **TAKE-HOME MESSAGE**

With **Knowledge Distillation** the **student can inherit the teacher regularization** properties:



Cannot beat an explicit regularization of the same type!



Achieve better generalization **even when** the **form of regularization of the teacher** is **not known explicitly DEEP LEARNING READY** :)

#### **TAKE-HOME MESSAGE**

With **Knowledge Distillation** the **student can inherit the teacher regularization** properties:



Cannot beat an explicit regularization of the same type!



Achieve better generalization **even when** the **form of regularization of the teacher** is **not known explicitly DEEP LEARNING READY** :)

Thank you for your attention!