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Knowledge distillation for network compression
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G. Hinton, O. Vinyals, J. Dean, NIPS 2015
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Knowledge distillation for network compression
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Larger NN — optimization bias (implicit regularization) — GOOD GENERALIZATION

The pre-activations retain:
- uncertainty estimation
- relational information between categories
- reweight the training samples



KD loss function

Lip =Y (L= )R f(@: W)+ x H(F(@; W, 1), f(as W. 1)) ) + AW |
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KD loss function

usual logistic logistic regression
regression with teacher pre-
with true labels activations
Licp =Y (1= X)H", f (2 W) + x B f(2; W, T), f(2; W, T))) + A|W|

n

Cross-entropy: 'H(y,p) = — (y log(p) + (1 — y) 1Og(1 — p))
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KD loss function

usual logistic logistic regression
regression with teacher pre-
with true labels activations
Licp =Y ((1=00H(", f (2 W) + X H(f(2; W, T), f(2; W, T))) + A|W|

n

Cross-entropy: H(y,p) = — (y log(p) + (1 — y) log(1 — p))

KD mixing parameter

Direct (explicit) regularization

Theory?



Studying distillation: stat phys approach
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a) pre-train teacher 1)/

b) train student 1}/

—> Step a) is unaffected by step b)

—> Both levels share the training set
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Studying distillation: stat phys approach

—> 2-level problem:

a) pre-train teacher 1}/

b) train student 1}/

—> Step a) is unaffected by step b)

—) Both levels share the[training set]

=) Franz-Parisi potential formalism:

o~ BEW)
Srp —/dWTlog/dWe —BE(W.W)

— Quenched and annealed disorder -> REPLICA METHOD

S. Franz and G. Parisi, PRL 1997
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Learning model: L2-regularized logistic regression




Model assumptions

Data model: Isotropic Gaussian mixture
(2 clusters, M points in dimension N)

Learning model: L2-regularized logistic regression

Asymptotic limit: N, M - M/N =a

Tuning regularization intensity A is key!!!



Model assumptions

Data model: Isotropic Gaussian mixture Unbalanced clusters: y* = Bern(p) hard!

(2 clusters, M points in dimension N) -
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Tuning regularization intensity A is key!!!

F. Mignacco, F. Krzakala, Y. Lu, P. Urbani, L. Zdeborova. ICML, 2020



Data model: Isotropic Gaussian mixture
(2 clusters, M points in dimension N)

Learning model: L2-regularized logistic regression

Asymptotic limi: N, M - M/N =a

Tuning regularization intensity A is key!!!

Model assumptions

Unbalanced clusters: ¥ = Bern(p) hard!
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Fixed student sparsity: fraction n=0.5 of the
weights are trained, the rest set to 0 a priori

F. Mignacco, F. Krzakala, Y. Lu, P. Urbani, L. Zdeborova. ICML, 2020
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L,-regularized logistic regression teacher:
effect of KD loss on the student
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Better teacher=better student

The student inherits the teacher
regularization through KD!

The obtained generalization
performance is still sub-optimal!



The KD student improves
together with the teacher
With a sub-optimal teacher the
student remains sub-optimal
(as the logistic regression estimator)

1 2

What if the teacher is not just regularized “explicitly”?

Is KD still effective in transferring
the generalization properties?
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The KD
student closes
the generalization

gap!!!

even though the form of
regularization of the teacher

is not known explicitly!

DEEP LEARNING READY
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Thank you for your attention!



