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Generative learning

Generative learning: learn representations of probability distributions from target data

directly represent the sampling process

represent a probability density function

Deep generative learning: generative learning with deep neural networks
Motivation: learn a transport map to represent the sampling process from target data
Solution: optimal transport and gradient flows

transport map

Deep generative learning via the transport map.
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Optimal transport

Let µ and ν be two probability measures. Suppose Z ∼ µ. Denote the distribution of T (Z ) by
T#µ, the pushforward of the measure µ under T . Then T is called a transport from µ to ν if

T#µ = ν.

Monge problem
Find a transport T of the probability mass under µ to ν minimizing the quadratic cost,

min
T :T#µ=ν

1
2
EX∼µ∥X − T (X )∥2. (1)

Any map T that is a solution of (1) is called an optimal transport map.

Kantorovich problem
To resolve the existence issue of the Monge problem (1), Kantorovich introduced a relaxation
of (1),

W2(µ, ν) = { inf
γ∈Γ(µ,ν)

E(X ,Y )∼γ [∥X − Y∥2
2]}

1
2 , (2)

where Γ(µ, ν) denotes the set of couplings of (µ, ν) [7, 2].
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Optimal transport

Suppose that µ and ν have densities q and p with respect to the Lebesque measure,
respectively.

The minimization problem in (2) admits a unique solution γ = (I , T )#µ with T = ∇Ψ,
where I is the identity map and ∇Ψ satisfies the Monge-Ampère equation

det(∇2Ψ(x)) =
q(x)

p(∇Ψ(x))
, x ∈ Rm. (3)

To find the optimal transport T , it suffices to solve (3) for Ψ.

However, this equation is difficult to solve due to the high nonlinearity of det.
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Optimal transport: linearization

Due to the high nonlinearity of det, we consider the linearized form of the Monge-Ampère
equation [7]

Ψ(x) = ∥x∥2/2 + tΦ(x), t ≥ 0,

thus
∇Ψ(x) = x + t∇Φ(x).

Let t → 0, we get the random process {Xt} and its laws {qt} satisfying

dXt

dt
= ∇Φ(Xt), t ≥ 0

d ln qt(x)
dt

= −△Φ(x)

with
X(0) = Z , q0 = µ = pZ , and q∞ = γ = pX ,

where △ is the Laplacian operator:

△f =
m∑

i=1

∂2f
∂x2

i
.
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Optimal transport: linearization

Linearization and McKean-Vlasov equation

A basic approach to addressing the difficulty due to nonlinearity is linearization.

We use a linearization method based on the residual map

Tt,Φt = ∇Ψ = 1+ t∇Φt , t ≥ 0, (4)

where Φt : Rm → R1 is a function to be chosen such that the law of Tt,Φt (Z ) approaches ν
as t increases [7].

This linearization scheme leads to the stochastic process Xt satisfying the
McKean-Vlasov equation

d
dt

Xt(x) = vt(Xt(x)), t ≥ 0, with X0 ∼ µ, µ- a.e. x ∈ Rm, (5)

where vt is the velocity vector field of Xt .

We have vt = ∇Φt . Thus vt also determines the residual map (4).
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Gradient flow

The movement of the particles {Xt}t≥0 along t is completely governed by the velocity
fields vt , given the initial value.

We choose a vt to decrease the discrepancy, e.g., f -divergence, between the distribution
of Xt , say µt , at time t and the target ν.

An equivalent formulation of (5) is through the gradient flow {µt}t≥0, where Xt ∼ µt , with
{vt}t≥0 as its velocity fields:

∂

∂t
µt = −∇ · (µtvt) in R+ × Rm with µ0 = µ,

Computationally it is more convenient to work with the Mckean-Vlasov equation (5).
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Velocity fields

The basic intuition is that we want to move along the direction that reduces the
discrepancies between µt and the target ν.

We use f -divergence [1] to measure the discrepancies:

L[µt ] = Df (µt∥ν) =
∫
Rm

p(x)f
(

qt(x)
p(x)

)
dx ,

where qt is the density of µt , p is the density of ν and f : R+ → R is a convex function
with f (1) = 0.

We choose the velocity fields vt such that L[µt ] is minimized. This leads to

vt(x) = Φt(x) = −∇f ′(rt(x)), where rt(x) =
qt(x)
p(x)

, x ∈ Rm.

If we use the χ2-divergence with f (c) = (c − 1)2/2, then

vt(x) = ∇rt(x)

is simply the gradient of the density ratio.
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Euler particle transport

We discretize the McKean-Vlasov equation (5). Let s > 0 be a small step size. We use
the forward Euler method defined iteratively by:

Tk = 1+ svk , (6)

Xk+1 = Tk (Xk ) = Xk + svk (Xk ), (7)

where X0 ∼ µ, µ0 = µ, vk is the velocity field at the k th step, k = 0, 1, ...,K for some large
K .

The final transport map is
T = TK ◦ TK−1 · · · ◦ T0,

which is the composition of a sequence of simple residual maps TK , . . . , T1, T0.

We refer to this updating scheme as the Euler particle transport (EPT).
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Training Euler transport map

When a random sample is available, it is natural to learn ν by first estimating the velocity
fields vk and then plugging the estimated vk in (6).

If we use the f -divergence as the energy functional, estimating the velocity fields

vk (x) = −∇f ′(rk (x)),

boils down to estimating the density ratios

rk (x) =
qk (x)
p(x)

dynamically at each iteration k = 1, . . . ,K .

We estimate density ratios nonparametrically using Bregman divergences and
gradient regularizer

Let v̂k be the estimated velocity fields at the k th iteration. The k th estimated residual map
is T̂k = 1+ sv̂k . Finally, the trained map is

T̂ = T̂K ◦ T̂K−1 ◦ · · · ◦ T̂0.
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Error bounds

Error due to linearization of the Monge-Ampère equation

W2(µt , ν) = O(e−λt),

for some λ > 0. Therefore, µt converges to ν exponentially fast as t → ∞.

Discretization: For an integer K ≥ 1 and a small s > 0, let

{µs
t : t ∈ [ks, (k + 1)s), k = 0, . . . ,K}

be a piecewise constant interpolation between µks and µ(k+1)s, k = 0, 1, . . . ,K .

Error due to discretization of µs
t in a finite time interval [0,T ] can be bounded :

sup
t∈[0,T ]

W2(µt , µ
s
t ) = O(s).
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Density-ratio estimation

Let r(x) = q(x)/p(x) be the density ratio.

Let g : R → R be a differentiable and strictly convex function.

Bregman score
The Bregman score with the base probability density p for measuring the discrepancy between
r and a measurable function R : Rm → R1 is

B(r ,R) = EX∼p[g′(R(X ))R(X )− g(R(X ))]− EX∼q[g′(R(X ))].

Least-squares density-ratio fitting

The least squares density-ratio (LSDR) fitting criterion with g(c) = (c − 1)2 is

BLSDR(r ,R) = EX∼p[R(X )2]− 2EX∼q[R(X )] + 1.
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Density-ratio estimation

LSDR estimation with gradient regularizer

Suppose {Xi}n
i=1 and {Yi}n

i=1 are two collections of i.i.d data from densities p(x) and q(x),
respectively.

Let H ≡ HD,W,S,B be the set of ReLU neural networks Rϕ with parameter ϕ, depth D,
width W, size S, and ∥Rϕ∥∞ ≤ B.
We combine the LSDR loss with the gradient regularizer as our objective function.

LSDR estimator
The resulting gradient regularized LSDR estimator of r = p/q is given by

R̂ϕ ∈ arg min
Rϕ∈H

1
n

n∑
i=1

[Rϕ(Xi)
2 − 2Rϕ(Yi)] + α

1
n

n∑
i=1

∥∇Rϕ(Xi)∥2
2, (8)

where α ≥ 0 is a regularization parameter.
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Density-ratio estimation

Next we bound the nonparametric estimation error of the density-ratio estimator under the
assumptions that the support of ν ≡ PX is concentrated on a compact low-dimensional
manifold and r is Lipsichiz continuous.

Let M ⊆ [−c, c]m be a Riemannian manifold [4] with dimension m, condition number 1/τ ,
volume V, geodesic covering regularity R, and m ≪ M = O (m ln(mVR/τ)) ≪ m.

Denote Mϵ = {x ∈ [−c, c]m : inf{∥x − y∥2 : y ∈ M} ≤ ϵ} , ϵ ∈ (0, 1).

Theorem 1

Assume supp(r) = Mϵ and r(x) is Lipschitz continuous with the bound B and the
Lipschitz constant L.

Suppose the topological parameter of HD,W,S,B in (8) with α = 0 satisfies D = O(log n),

W = O(n
M

2(2+M) / log n), S = O(n
M−2
M+2 / log4 n), and B = 2B.

Then,
E{Xi ,Yi}n

i=1
[∥R̂ϕ − r∥2

L2(ν)] ≤ C(B2 + cLmM)n−2/(2+M),

where C is a universal constant.
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Density-ratio estimation

This result is of independent interest for nonparametric estimation with deep neural networks.
The error bound established in Theorem 1 for the nonparametric deep density-ratio fitting is
new.

If the intrinsic dimension M of the data is much smaller than the ambient dimension m,
the convergence rate

O(n− 2
2+Mlog d )

is faster than the optimal rate of convergence for nonparametric estimation of a Lipschitz
target in Rd , where the optimal rate is

O(n− 2
2+d ),

see e.g., [6, 5].

The proposed density-ratio estimators are capable of circumventing the “curse of
dimensionality” if data is supported on a lower-dimensional manifold.

Low-dimensional latent structure of many complex data has been frequently encountered
by practitioners in image analysis, computer vision and natural language processing.
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Euler particle transport: algorithm

Outer loop for modeling low dimensional latent structure (optional)

Sample {Zi}n
i=1 ⊂ Rℓ from a low-dimensional reference distribution µ̃

Compute Ỹi = Gθ(Zi), i = 1, 2, . . . , n.
Inner loop for finding the push-forward map

If there are no outer loops, sample Ỹi ∼ µ, i = 1, . . . , n.
Get v̂(x) = −∇f ′(R̂ϕ(x)) via solving (8) with Yi = Ỹi . Set T̂ = 1+ sv̂ with a
small step size s.
Update the particles Ỹi = T̂ (Ỹi), i = 1, . . . , n.

End inner loop
If there are outer loops, update the parameter θ of Gθ(·) via solving
minθ

∑n
i=1 ∥Gθ(Zi)− Ỹi∥2

2/n.

End outer loop
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Numerical experiments

2-D simulated data.
Benchmark real data set:

MNIST, 60K (28 × 28)
Fashion-MNIST, 60K (28 × 28)
CIFA-10, 50K (32 × 32)
CelebA: 200K (64 × 64)

Network architecture/ hyperparameters: see paper.

Platform: Pytorch with NVIDIA Tesla K80 GPUs.

The PyTorch code of EPT is available at https://github.com/xjtuygao/EPT.
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Numerical experiments: 2-D distributions
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KDE plots of the target samples (the first row) and the corresponding generated samples (the second row).
The third row shows surface plots of estimated density ratio after 20k iterations.
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Convergence of EPT on pinwheel, checkerboard and 2spirals. Top: The initialization stage. Middle: The
decline stage. Bottom: The converging stage. Left: LSDR fitting loss (20) with α = 0. Right: Estimation
of the gradient norm EX∼qk

[∥∇Rϕ(X)∥2].
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Numerical experiments: 2-D distributions

4 4
4

4

4 4
4

4

Learned 5squares from 4squares, and large4gaussians from small4gaussians.
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Left two figures: Surface plots of estimated density-ratio without gradient penalty. Right two figures:
Surface plots of estimated density-ratio with gradient penalty.
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Particle evolution of EPT on MNIST

Particle evolution of EPT on MNIST
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Particle evolution of EPT on CIFAR10

Particle evolution of EPT on CIFAR10.
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Numerical experiments: visual comparisons

Visual comparisons between real image (top) and
generated image (bottom) of MNIST
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Numerical experiments: visual comparisons

Visual comparisons between real image (top) and
generated image (bottom) of CIFAR10

Gao, Huang, Jiao, Liu, Lu, and Yang Euler Particle Transport July 31, 2021 24 / 28



Numerical experiments: visual comparisons

Visual comparisons between real image (top) and
generated image (bottom) of CelebA
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Numerical experiments: FID scores

Mean (standard deviation) of FID scores on CIFAR10 and results in last six rows are
adapted from [3].

Models CIFAR10 (50k)

EPT-LSDR-χ2 24.9 (0.1)
EPT-LR-KL 25.9 (0.1)
EPT-LR-JS 25.3 (0.1)
EPT-LR-logD 24.6 (0.1)

WGAN-GP 31.1 (0.2)
MMDGAN-GP-L2 31.4 (0.3)
SMMDGAN 31.5 (0.4)
SN-GAN 26.7 (0.2)
SN-SWGAN 28.5 (0.2)
SN-SMMDGAN 25.0 (0.3)
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Conclusion

Generative learning is an effective approach to learning distributions of complex
high-dimensional data.

The key factor for the success of generative learning is the use of deep neural networks
to approximate high-dimensional functions nonparametrically.

The proposed Euler particle transport (EPT) method combines the strength of optimal
transport, stochastic differential equation and deep density-ratio estimation.

EPT is computationally stable and relatively easy to train.

The numerical performance of ETP is comparable with the state-of-the-art methods.
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THANK YOU FOR YOUR ATTENTION!
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[2] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space
of probability measures. Springer Science & Business Media, 2008.

[3] Michael Arbel, Dougal Sutherland, Mikolaj Binkowski, and Arthur Gretton. On gradient regularizers for
MMD GANs. In NIPS, 2018.

[4] John Lee. Introduction to Riemannian Manifolds. Springer, 2010.

[5] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. The Annals of Statistics, in press, 2020.

[6] Charles J. Stone. Optimal global rates of convergence for nonparametric regression. The Annals of
Statistics, 10(4):1040–1053, 1982.

[7] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

Gao, Huang, Jiao, Liu, Lu, and Yang Euler Particle Transport July 31, 2021 28 / 28


	Conclusion
	References

