
Practical and Fast Momentum-Based Power Methods

T. Rabbani & A. Jain & A. Rajkumar & F. Huang

July 31, 2021

1 / 20

Overview

1 Classical Power Method

2 Accelerated Power Method

3 DMPower: Delayed-Momentum Power Method

4 What else is in the paper?

2 / 20

Classical Power Method

Goal

For a diagonalizable matrix A, compute its dominant eigenvalue λ1 and
associated dominant eigenvector v1.

The power method is an iterative program which solves this problem
assuming there is a gap between the two largest eigenvalues, i.e.,
|λ1| > |λ2|.

3 / 20

Classical Power Method

Assume A ∈ Rn×n is diagonalizable and |λ1| > |λ2|.

Algorithm 1 Vanilla Power Method

1: Choose a random vector q0 ∈ Rn.
2: for k = 1 to T do
3: qk = Aqk−1

4: qk ← qk/||qk ||
5: γk = q>k Aqk
6: end for
7: return qT , γT

If q0 is non-orthogonal to v1, then qT → v1, γT → λ1 as T →∞.

4 / 20

Classical Power Method

Assume A ∈ Rn×n is diagonalizable and |λ1| > |λ2|.

Algorithm 2 Vanilla Power Method

1: Choose a random vector q0 ∈ Rn.
2: for k = 1 to T do
3: qk = Aqk−1

4: qk ← qk/||qk ||
5: γk = q>k Aqk
6: end for
7: return qT , γT

If q0 is non-orthogonal to v1, then qT → v1, γT → λ1 as T →∞.
Convergence rate of T = O(1

∆ log 1
ε), where ∆ := |λ1 − λ2| and

ε := ||qT − v1|| is the desired accuracy.

5 / 20

Accelerated Power Method

De Sa et al., ”Accelerated Stochastic Power Iteration.” (2018) introduces
a scheme for speeding up the power method using a momentum term.

Algorithm 3 Power+M

1: Choose a random vector q0 ∈ Rn.
2: q1 = Aq0/||Aq0||
3: for k = 1 to T do
4: qk+1 = Aqk − βqk−1

5: qk+1 ← qk+1/||qk+1||
6: γk+1 = q>k+1Aqk+1

7: end for
8: return qT , γT

Inspired by Polyak’s heavy-ball method, viz., accelerated gradient descent.
(B. Polyak, ”Some methods of speeding up the convergence of iteration
methods.” 1964.)

6 / 20

Accelerated Power Method

Algorithm 4 Power+M

1: Choose a random vector q0 ∈ Rn.
2: q1 = Aq0/||Aq0||
3: for k = 1 to T do
4: qk+1 = Aqk − βqk−1

5: qk+1 ← qk+1/||qk+1||
6: γk+1 = q>k+1Aqk+1

7: end for
8: return qT , γT

If β = λ2
2/4, then this has a convergence rate of T = O(1√

∆
log 1

ε)!

Comparable to the convergence rate of the SOTA Lanczos algorithm.

7 / 20

Accelerated Power Method

If β = λ2
2/4, then this has a convergence rate of T = O(1√

∆
log 1

ε)!

Comparable to the convergence rate of the SOTA Lanczos algorithm.

Problem: We have no idea what λ2 is at runtime. Furthermore, if
β 6∈ [λ2

2/4, λ2
1/4) we risk slow or non-convergence.

8 / 20

Accelerated Power Method

If β = λ2
2/4, then this has a convergence rate of T = O(1√

∆
log 1

ε)!

Comparable to the convergence rate of the SOTA Lanczos algorithm.

Problem: We have no idea what λ2 is at runtime. Furthermore, if
β 6∈ [λ2

2/4, λ2
1/4) we risk slow or non-convergence.

Solution: Intelligently approximate λ2 and update β every iteration
accordingly.

9 / 20

DMPower: Delayed-Momentum Power Method

How to approximate λ2? By using Hotelling deflation and approximates of
λ1.

Algorithm 5 Hotelling Deflation

Require: λ1, v1.
1: Choose a random vector w0 ∈ Rn.
2: for k = 1 to T do
3: wk = (A− λ1v1v1

>)wk−1

4: wk+1 ← wk+1/||wk+1||
5: πk+1 = w>k+1Awk+1

6: end for
7: return wT , πT

If |λ2| > |λ3|, then wk → v2, πk → λ2.

10 / 20

DMPower: Delayed-Momentum Power Method

DMPower is broken up into two phases, a Pre-M phase which
approximates λ2 and then an M phase which experiences acceleration.

Algorithm 6 DMPower: Pre-M Phase

Require: A ∈ Rd×d symmetric, unit q0 ∈ Rd , pre-momentum phase itera-
tions J, momentum phase iterations K , unit w0 ∈ Rd

1: for j = 1, 2, . . . , J do
2: qj ← Aqj−1

3: qj ← qj/qj
4: νj ← q>j Aqj {Rayleigh Quotient estimate of λ1}
5: P ← νjqjq

>
j {Approximation of λ1v1v

>
1 }

6: wj ← (A− P)wj−1 {Inexact deflation}
7: wj ← wj/wj

8: µj ← w>j Awj {Rayleigh Quotient estimate of λ2}
9: end for

10: return wJ , µJ

11 / 20

DMPower: Delayed-Momentum Power Method

Approximation of λ1 and v1.

Algorithm 7 DMPower: Pre-M Phase

Require: A ∈ Rd×d symmetric, unit q0 ∈ Rd , pre-momentum phase itera-
tions J, momentum phase iterations K , unit w0 ∈ Rd

1: for j = 1, 2, . . . , J do
2: qj ← Aqj−1

3: qj ← qj/qj
4: νj ← q>j Aqj {Rayleigh Quotient estimate of λ1}
5: P ← νjqjq

>
j {Approximation of λ1v1v

>
1 }

6: wj ← (A− P)wj−1 {Inexact deflation}
7: wj ← wj/wj

8: µj ← w>j Awj {Rayleigh Quotient estimate of λ2}
9: end for

10: return wJ , µJ

12 / 20

DMPower: Delayed-Momentum Power Method

Approximation of λ2 and v2.

Algorithm 8 DMPower: Pre-M Phase

Require: A ∈ Rd×d symmetric, unit q0 ∈ Rd , pre-momentum phase itera-
tions J, momentum phase iterations K , unit w0 ∈ Rd

1: for j = 1, 2, . . . , J do
2: qj ← Aqj−1

3: qj ← qj/qj
4: νj ← q>j Aqj {Rayleigh Quotient estimate of λ1}
5: P ← νjqjq

>
j {Approximation of λ1v1v

>
1 }

6: wj ← (A− P)wj−1 {Inexact deflation}
7: wj ← wj/wj

8: µj ← w>j Awj {Rayleigh Quotient estimate of λ2}
9: end for

10: return wJ , µJ

13 / 20

DMPower: Delayed-Momentum Power Method

Momentum phase. Closely resembles Power+M.

Algorithm 9 DMPower: M Phase

1: λ̂2 = µJ
2: β ← λ̂2

2/4 {Approximated optimal momentum coefficient}
3: q1 ← qJ {Current estimate of v1}
4: q0 ← ~0
5: for k = 1, 2, . . . ,K do
6: qk+1 ← Aqk − βqk−1 {Momentum update}
7: qk+1 ← qk+1/qk+1

8: νk ← q>k+1Aqk+1

9: end for
10: return qK , νK

14 / 20

DMPower: Fine-tuning Pre-M

In our meta-algorithm, pre-M terminates after J iterations, but we need to
terminate once we believe our approximation µj ≈ λ2. In implementation,
we therefore set a hyperparameter ρ, which determines when to exit pre-M.

Specifically, pre-M exits once |µj − µj−1| < ρ.

15 / 20

DMPower: Fine-tuning Pre-M

In our meta-algorithm, pre-M terminates after J iterations, but we need to
terminate once we believe our approximation µj ≈ λ2. In implementation,
we therefore set a hyperparameter ρ, which determines when to exit pre-M.

Specifically, pre-M exits once |µj − µj−1| < ρ.

An error-bound such as ρ is far less restrictive at runtime than a guess of
λ2. Furthermore, in our paper, we provide a guarantee of convergence if
one has a priori lower bound on ∆ = |λ1 − λ2|.

16 / 20

Convergence & Results

Theorem

Let ∆ = |λ1 − λ2| denote the absolute difference between the largest and
second-largest eigenvalues.

With high probability, our proposed practical DMPower, after an efficient
pre-momentum warm-up stage, outputs an ε-close estimate of the leading

eigenvector within the state-of-the-art O
(

1√
∆

log
(

1
ε

))
iteration

complexity using a momentum acceleration, without requiring knowledge
of λ2 or hyperparameter selection for λ2.

17 / 20

Convergence & Results

18 / 20

What else is in the paper?

Streaming algorithm with convergence guarantee.

Application: Spectral Clustering

Comparisons between pre-M & M phase iterations.

Extensive wall-time & iteration complexity comparisons.

19 / 20

Fin

Thanks for watching!

20 / 20

	Classical Power Method
	Accelerated Power Method
	DMPower: Delayed-Momentum Power Method
	What else is in the paper?

