Practical and Fast Momentum-Based Power Methods

T. Rabbani & A. Jain & A. Rajkumar & F. Huang

July 31, 2021

- 2 Accelerated Power Method
- 3 DMPower: Delayed-Momentum Power Method
- 4 What else is in the paper?

Goal

For a diagonalizable matrix A, compute its dominant eigenvalue λ_1 and associated dominant eigenvector v_1 .

The power method is an iterative program which solves this problem assuming there is a gap between the two largest eigenvalues, i.e., $|\lambda_1| > |\lambda_2|$.

Assume $A \in \mathbb{R}^{n \times n}$ is diagonalizable and $|\lambda_1| > |\lambda_2|$.

Algorithm 1 Vanilla Power Method

- 1: Choose a random vector $q_0 \in \mathbb{R}^n$.
- 2: for k = 1 to T do
- 3: $q_k = Aq_{k-1}$
- 4: $q_k \leftarrow q_k / ||q_k||$

5:
$$\gamma_k = q_k^{\top} A q_k$$

- 6: end for
- 7: return q_T, γ_T

If q_0 is non-orthogonal to v_1 , then $q_T \rightarrow v_1, \gamma_T \rightarrow \lambda_1$ as $T \rightarrow \infty$.

Assume $A \in \mathbb{R}^{n \times n}$ is diagonalizable and $|\lambda_1| > |\lambda_2|$.

Algorithm 2 Vanilla Power Method

- 1: Choose a random vector $q_0 \in \mathbb{R}^n$.
- 2: for k = 1 to T do

$$3: \quad q_k = Aq_{k-1}$$

4: $q_k \leftarrow q_k / ||q_k||$

5:
$$\gamma_k = q_k^{\top} A q_k$$

- 6: end for
- 7: return q_T, γ_T

If q_0 is non-orthogonal to v_1 , then $q_T \to v_1, \gamma_T \to \lambda_1$ as $T \to \infty$. Convergence rate of $T = \mathcal{O}(\frac{1}{\Delta} \log \frac{1}{\epsilon})$, where $\Delta := |\lambda_1 - \lambda_2|$ and $\epsilon := ||q_T - v_1||$ is the desired accuracy. De Sa et al., "Accelerated Stochastic Power Iteration." (2018) introduces a scheme for speeding up the power method using a momentum term.

Algorithm 3 Power+M

- 1: Choose a random vector $q_0 \in \mathbb{R}^n$.
- 2: $q_1 = Aq_0/||Aq_0||$
- 3: for k = 1 to T do
- $4: \quad q_{k+1} = Aq_k \beta q_{k-1}$
- 5: $q_{k+1} \leftarrow q_{k+1}/||q_{k+1}||$

$$6: \quad \gamma_{k+1} = q_{k+1}^{\top} A q_{k+1}$$

- 7: end for
- 8: return q_T, γ_T

Inspired by Polyak's heavy-ball method, viz., accelerated gradient descent. (B. Polyak, "Some methods of speeding up the convergence of iteration methods." 1964.)

Algorithm 4 Power+M

- 1: Choose a random vector $q_0 \in \mathbb{R}^n$.
- 2: $q_1 = Aq_0/||Aq_0||$
- 3: for k = 1 to T do
- $4: \quad q_{k+1} = Aq_k \beta q_{k-1}$
- 5: $q_{k+1} \leftarrow q_{k+1}/||q_{k+1}||$
- $6: \quad \gamma_{k+1} = \boldsymbol{q}_{k+1}^\top \boldsymbol{A} \boldsymbol{q}_{k+1}$
- 7: end for
- 8: return q_T, γ_T

If $\beta = \lambda_2^2/4$, then this has a convergence rate of $T = O(\frac{1}{\sqrt{\Delta}} \log \frac{1}{\epsilon})!$ Comparable to the convergence rate of the SOTA Lanczos algorithm. If $\beta = \lambda_2^2/4$, then this has a convergence rate of $T = O(\frac{1}{\sqrt{\Delta}} \log \frac{1}{\epsilon})!$ Comparable to the convergence rate of the SOTA Lanczos algorithm.

Problem: We have no idea what λ_2 is at runtime. Furthermore, if $\beta \notin [\lambda_2^2/4, \lambda_1^2/4)$ we risk slow or non-convergence.

If $\beta = \lambda_2^2/4$, then this has a convergence rate of $T = O(\frac{1}{\sqrt{\Delta}} \log \frac{1}{\epsilon})!$ Comparable to the convergence rate of the SOTA Lanczos algorithm.

Problem: We have no idea what λ_2 is at runtime. Furthermore, if $\beta \notin [\lambda_2^2/4, \lambda_1^2/4)$ we risk slow or non-convergence.

Solution: Intelligently approximate λ_2 and update β every iteration accordingly.

How to approximate $\lambda_2?$ By using Hotelling deflation and approximates of $\lambda_1.$

Algorithm 5 Hotelling Deflation

Require: λ_1, v_1 .

- 1: Choose a random vector $w_0 \in \mathbb{R}^n$.
- 2: for k = 1 to T do

3:
$$w_k = (A - \lambda_1 v_1 v_1^\top) w_{k-1}$$

4:
$$w_{k+1} \leftarrow w_{k+1}/||w_{k+1}||$$

5:
$$\pi_{k+1} = w_{k+1}^{\dagger} A w_{k+1}$$

- 6: end for
- 7: return w_T, π_T

If $|\lambda_2| > |\lambda_3|$, then $w_k \to v_2$, $\pi_k \to \lambda_2$.

DMPower is broken up into two phases, a Pre-M phase which approximates λ_2 and then an *M* phase which experiences acceleration.

Algorithm 6 DMPower: Pre-M Phase

Require: $A \in \mathbb{R}^{d \times d}$ symmetric, unit $q_0 \in \mathbb{R}^d$, pre-momentum phase iterations *J*, momentum phase iterations *K*, unit $w_0 \in \mathbb{R}^d$ 1: for j = 1, 2, ..., J do

2:
$$q_j \leftarrow Aq_{j-1}$$

3:
$$q_j \leftarrow q_j/q_j$$

4:
$$\nu_j \leftarrow q_j^\top A q_j$$
 {Rayleigh Quotient estimate of λ_1 }

5:
$$P \leftarrow \nu_j q_j q_j^\top \{\text{Approximation of } \lambda_1 v_1 v_1^\top \}$$

6:
$$w_j \leftarrow (A - P)w_{j-1}$$
 {Inexact deflation}

7:
$$w_j \leftarrow w_j / w_j$$

8:
$$\mu_j \leftarrow w_j^\top A w_j$$
 {Rayleigh Quotient estimate of λ_2 }

9: end for

10: **return** *w*_{*J*}, μ_{*J*}

Approximation of λ_1 and v_1 .

Algorithm 7 DMPower: Pre-M Phase

Require: $A \in \mathbb{R}^{d \times d}$ symmetric, unit $q_0 \in \mathbb{R}^d$, pre-momentum phase iterations J, momentum phase iterations K, unit $w_0 \in \mathbb{R}^d$

- 1: for $j = 1, 2, \ldots, J$ do
- 2: $q_j \leftarrow Aq_{j-1}$
- 3: $q_j \leftarrow q_j/q_j$
- 4: $\nu_j \leftarrow q_j^\top A q_j$ {Rayleigh Quotient estimate of λ_1 }
- 5: $P \leftarrow \nu_j q_j q_j^\top \{\text{Approximation of } \lambda_1 v_1 v_1^\top \}$
- 6: $w_j \leftarrow (A P)w_{j-1}$ {Inexact deflation}
- 7: $w_j \leftarrow w_j / w_j$
- 8: $\mu_j \leftarrow w_j^\top A w_j$ {Rayleigh Quotient estimate of λ_2 }
- 9: end for

10: return w_J, μ_J

Approximation of λ_2 and v_2 .

Algorithm 8 DMPower: Pre-M Phase

Require: $A \in \mathbb{R}^{d \times d}$ symmetric, unit $q_0 \in \mathbb{R}^d$, pre-momentum phase iterations J, momentum phase iterations K, unit $w_0 \in \mathbb{R}^d$

- 1: for j = 1, 2, ..., J do
- 2: $q_j \leftarrow Aq_{j-1}$
- 3: $q_j \leftarrow q_j/q_j$
- 4: $\nu_j \leftarrow q_j^\top A q_j$ {Rayleigh Quotient estimate of λ_1 }
- 5. $P \leftarrow \nu_j q_j q_j^{\top} \{ \text{Approximation of } \lambda_1 v_1 v_1^{\top} \}$
- 6: $w_j \leftarrow (A P)w_{j-1}$ {Inexact deflation}
- 7: $w_j \leftarrow w_j/w_j$
- 8: $\mu_j \leftarrow w_i^\top A w_j$ {Rayleigh Quotient estimate of λ_2 }
- 9: end for

10: **return** *w*_{*J*}, μ_{*J*}

Momentum phase. Closely resembles Power+M.

Algorithm 9 DMPower: M Phase

1: $\widehat{\lambda}_2 = \mu_J$ 2: $\beta \leftarrow \widehat{\lambda}_2^2/4$ {Approximated optimal momentum coefficient} 3: $q_1 \leftarrow q_J$ {Current estimate of v_1 } 4: $q_0 \leftarrow \vec{0}$ 5: for k = 1, 2, ..., K do 6: $q_{k+1} \leftarrow Aq_k - \beta q_{k-1}$ {Momentum update} 7: $q_{k+1} \leftarrow q_{k+1}/q_{k+1}$ 8: $\nu_k \leftarrow q_{k+1}^\top Aq_{k+1}$ 9: end for

10: return q_K, ν_K

In our meta-algorithm, pre-M terminates after J iterations, but we need to terminate once we believe our approximation $\mu_j \approx \lambda_2$. In implementation, we therefore set a hyperparameter ρ , which determines when to exit pre-M.

Specifically, pre-M exits once $|\mu_j - \mu_{j-1}| < \rho$.

In our meta-algorithm, pre-M terminates after J iterations, but we need to terminate once we believe our approximation $\mu_j \approx \lambda_2$. In implementation, we therefore set a hyperparameter ρ , which determines when to exit pre-M.

Specifically, pre-M exits once $|\mu_j - \mu_{j-1}| < \rho$.

An error-bound such as ρ is far less restrictive at runtime than a guess of λ_2 . Furthermore, in our paper, we provide a guarantee of convergence if one has a priori lower bound on $\Delta = |\lambda_1 - \lambda_2|$.

Theorem

Let $\Delta = |\lambda_1 - \lambda_2|$ denote the absolute difference between the largest and second-largest eigenvalues.

With high probability, our proposed practical DMPower, after an efficient pre-momentum warm-up stage, outputs an ϵ -close estimate of the leading eigenvector within the state-of-the-art $\mathcal{O}\left(\frac{1}{\sqrt{\Delta}}\log\left(\frac{1}{\epsilon}\right)\right)$ iteration complexity using a momentum acceleration, without requiring knowledge of λ_2 or hyperparameter selection for λ_2 .

Convergence & Results

- Streaming algorithm with convergence guarantee.
- Application: Spectral Clustering
- Comparisons between pre-M & M phase iterations.
- Extensive wall-time & iteration complexity comparisons.

Thanks for watching!