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@ Classical Power Method
© Accelerated Power Method
© DMPower: Delayed-Momentum Power Method

e What else is in the paper?
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Classical Power Method

For a diagonalizable matrix A, compute its dominant eigenvalue \; and
associated dominant eigenvector v;.

The power method is an iterative program which solves this problem
assuming there is a gap between the two largest eigenvalues, i.e.,
A1l > Xzl
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Classical Power Method

Assume A € R"*" is diagonalizable and |A1] > |A2]|.

Algorithm 1 Vanilla Power Method
1: Choose a random vector gg € R".
:for k=1to T do
Gk = Aqk—1
k< qr/axll
Yk = q; Aqk
end for
return qr,yT

No o s

If go is non-orthogonal to vy, then g7 — vi,y7 — A1 as T — oo.
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Classical Power Method

Assume A € R"™" is diagonalizable and |A\1] > |Az].

Algorithm 2 Vanilla Power Method
1: Choose a random vector gy € R".
2: for k=1to T do
33 gk = Agk-1
4 gk < qk/|lq«l]
5
6
7

Yk = g Agk
: end for
: return gr,vT

If qo is non-orthogonal to vy, then g7 — vi,vy7 = A1 as T — oc.
Convergence rate of T = O(x log 1), where A := [A; — X;| and
€ :=||gT — v1|| is the desired accuracy.
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Accelerated Power Method

De Sa et al., "Accelerated Stochastic Power Iteration.” (2018) introduces
a scheme for speeding up the power method using a momentum term.

Algorithm 3 Power+M
1: Choose a random vector qo € R”.
q1 = Aqo/||Aqol|
:fork=1to T do
dk+1 = Adk — Bqk—1
k1 < qer1/l1qrral]
V41 = Gps1AGk+1
end for
return qr,vT

o N oG s W

Inspired by Polyak’s heavy-ball method, viz., accelerated gradient descent.
(B. Polyak, "Some methods of speeding up the convergence of iteration
methods.” 1964.)
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Accelerated Power Method

Algorithm 4 Power+M
1: Choose a random vector gg € R".
a1 = Adqo/[|Aqol|
:for k=1to T do
Gk+1 = Aqk — Bqk-1
Gk+1 < G/l Grl|

Yk+1 = q,LlAqu
end for

return qr,"T

@ N g kW

If B = )2/4, then this has a convergence rate of T = O(ﬁ log )!
Comparable to the convergence rate of the SOTA Lanczos algorithm.
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Accelerated Power Method

If B = )3/4, then this has a convergence rate of T = O(ﬁ log )!
Comparable to the convergence rate of the SOTA Lanczos algorithm.

Problem: We have no idea what \; is at runtime. Furthermore, if
B & [\3/4,)23/4) we risk slow or non-convergence.
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Accelerated Power Method

If B = )2/4, then this has a convergence rate of T = O(ﬁ log )!
Comparable to the convergence rate of the SOTA Lanczos algorithm.

Problem: We have no idea what \; is at runtime. Furthermore, if
B & [\3/4,)23/4) we risk slow or non-convergence.

Solution: Intelligently approximate Ay and update (5 every iteration
accordingly.
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DMPower: Delayed-Momentum Power Method

How to approximate A7 By using Hotelling deflation and approximates of
A1,

Algorithm 5 Hotelling Deflation
Require: A1, v;.
1: Choose a random vector wy € R”.
2: for k=1to T do
3 Wi = (A — )\1V1V1T)Wk_1
4 Wigr ¢ Weg1/|| Wil
5
6
7

&
Th+1 = Wy 1 AWk41

: end for

: return wr, T

If ‘)\2| > ’)\3‘, then wy — vo, T — Ao.
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DMPower: Delayed-Momentum Power Method

DMPower is broken up into two phases, a Pre-M phase which
approximates \> and then an M phase which experiences acceleration.

Algorithm 6 DMPower: Pre-M Phase

Require: A € R¥*9 symmetric, unit go € RY, pre-momentum phase itera-
tions J, momentum phase iterations K, unit wy € R?
1: forj=1,2,...,J do
qj < Agj—1
qj < qj/qj
Vi < qJTAqJ- {Rayleigh Quotient estimate of A1}
P« qujqu {Approximation of A\jviv; }
w; < (A — P)wj_1 {Inexact deflation}
Wj < wj/w
8 fuj WJ-TAWJ' {Rayleigh Quotient estimate of A\»}
9: end for
10: return wy, uy

U
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DMPower: Delayed-Momentum Power Method

Approximation of A\; and v;.

Algorithm 7 DMPower: Pre-M Phase

Require: A € R¥*9 symmetric, unit go € RY, pre-momentum phase itera-
tions J, momentum phase iterations K, unit wy € R
1: forj=1,2,...,J do
gj < Agj—1
qj < q;/qj
Vj ququ {Rayleigh Quotient estimate of A1}
P« yjqjqu {Approximation of A\jviv; }
w; < (A — P)wj_1 {Inexact deflation}
Wj = wj/w;
8 fuj WJ-TAWJ' {Rayleigh Quotient estimate of A\»}
9: end for
10: return wy, uy

N g s~ wen
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DMPower: Delayed-Momentum Power Method

Approximation of Ay and vs.

Algorithm 8 DMPower: Pre-M Phase

Require: A € R¥*9 symmetric, unit go € RY, pre-momentum phase itera-
tions J, momentum phase iterations K, unit wy € R
1: forj=1,2,...,J do
qj < Agj—1
qj < qj/qj
Vi < qJTAqJ- {Rayleigh Quotient estimate of A1}
P« yjqjqu {Approximation of A\jviv; }
w; < (A — P)wj_1 {Inexact deflation}
Wj = wj/w
8: i WJ-TAWJ' {Rayleigh Quotient estimate of A}
9: end for
10: return wy, uy

N g s~ wen
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DMPower: Delayed-Momentum Power Method

Momentum phase. Closely resembles Power+M.

Algorithm 9 DMPower: M Phase

L Ap = puy

2: B+ X%/4 {Approximated optimal momentum coefficient}
3: g1 « q {Current estimate of v;}

4: qo < 6

5. for k=1,2,...,K do

6:  gi+1 < Agk — Bqk—1 {Momentum update}

70 Gkl ¢ Qri1/ ket

8 Vg q;j+1Aqk+1

9: end for

10: return qg, vk
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DMPower: Fine-tuning Pre-M

In our meta-algorithm, pre-M terminates after J iterations, but we need to
terminate once we believe our approximation p; =~ X>. In implementation,
we therefore set a hyperparameter p, which determines when to exit pre-M.

Specifically, pre-M exits once |p; — pj—1| < p.
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DMPower: Fine-tuning Pre-M

In our meta-algorithm, pre-M terminates after J iterations, but we need to
terminate once we believe our approximation p; = X>. In implementation,
we therefore set a hyperparameter p, which determines when to exit pre-M.

Specifically, pre-M exits once |u; — pj—1| < p.

An error-bound such as p is far less restrictive at runtime than a guess of
A2. Furthermore, in our paper, we provide a guarantee of convergence if
one has a priori lower bound on A = |A\; — Ap|.
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Convergence & Results

Theorem

Let A = |\1 — 2| denote the absolute difference between the largest and
second-largest eigenvalues.

With high probability, our proposed practical DMPower, after an efficient
pre-momentum warm-up stage, outputs an e-close estimate of the leading

eigenvector within the state-of-the-art O <\/LZ log (%)) iteration

complexity using a momentum acceleration, without requiring knowledge
of \» or hyperparameter selection for \s.
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Convergence & Results
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What else is in the paper?

Streaming algorithm with convergence guarantee.
Application: Spectral Clustering

Comparisons between pre-M & M phase iterations.

Extensive wall-time & iteration complexity comparisons.
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Thanks for watching!
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