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Introduction Problem Setup

Minimization Using Few Zeroth-Order Queries

min
θ∈Rd

f(θ) ≡ Eω∼P[F (θ,ω)] , (1)

• stochastic: evaluation of f(θ) is corrupted by noise
• limited-resource: collecting F (·,ω) is expensive

Stochastic Approximation (SA) Algorithms

1st-order : θ̂k+1 = θ̂k − akĝk(θ̂k) , (2)
2nd-order : θ̂k+1 = θ̂k − akĤ−1

k ĝk(θ̂k) . (3)

w/ ak is stepsize, both ĝk and Ĥk are approximation using ZO queries.
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Introduction Why Hessian Approximation?

Comparison of 1st & 2nd methods
Localized model of f(θ) within {θ + d : ||d|| ≤ δ}

f(θ) + dT g(θ) + dT B(θ)d/2 (4)

Letting curvature matrix B(θ) = L2I motivates (2) and B(θ) = H(θ)
motivates (3) where L ≥ sup||d||≤δ ||H(θ + d)||.

1 model-trust radius: Levenberg-Marquardt damping technique for (3)
2 computing cost: affordable storage, computation, and inversion.

Benefits of (3) over (2)

• offers faster convergence when θ̂k is near θ∗

• eliminates the need for tuning some hyperparameters
• local curvature exploitation (preconditioning)
• parameter remains intact under linear mapping
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Introduction Prior Works for Hessian Estimation

Hessian estimator using ZO oracles
[Fab71] requires O(d2) ZO queries per iteration.
[Spa00] 2SPSA costs four ZO queries.
[PBFM16] 2RDSA costs three ZO queries, but with contrived constants.

• [MG15, WMGL17, ABC+19] use first-order oracles
• [ABH17] uses Hessian-vector-product oracle
• [SDPG14, BHNS16, SS19] use second-order oracle

Core Budget Indicator
ZO query complexity to achieve certain level of accuracy.
Besides, floating point operations per iteration may be important.
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Our Hessian Estimate Motivation

Stein’s Identity
Assume random vector X has density function p(·) : Rd 7→ R. Under
certain conditions

E

{
q(X)[p(X)]−1∇p(X)

}
= −E[∇q(X)] , (5)

E

{
q(X)[p(X)]−1∇2p(X)

}
= E[∇2q(X)] . (6)

Other forms exist for discrete distributed X.

Ĥk =


c−2

k F +
k (ukuT

k − I) , (7a)
c−2

k (F +
k − Fk)(ukuT

k − I) , (7b)
(2c2

k)−1(F +
k + F−k )(ukuT

k − I) , (7c)
(2c2

k)−1(F +
k + F−k − 2Fk)(ukuT

k − I) . (7d)

F±k ≡ F (θ̂k ± ckuk,ω±k ), uk follows multivariate standard normal
distribution, ck is differencing magnitude.
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Our Hessian Estimate Comparison with 2SPSA

• On the basis of the same convergence rate, our estimator requires
three queries, while 2SPSA needs four. Besides, we require
generating one perturbation vector and tuning one differencing
magnitude, while 2SPSA needs two.
• Our estimator is naturally symmetric, while 2SPSA requires manual

symmetrization.
• We require “thrice cont’ differentiable w/ Lipschitz continuous

3rd-order derivatives”, while 2SPSA requires “four-times
continuously differentiable w/ bounded fourth-order derivatives”.
• Thanks to Stein’s identity, proof is simplified.

Following proofs of 2SPSA will not give fastest convergence.
• The smoothing scheme for estimating the Hessian estimator is

generalized.
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Numerical Study Skew-Quartic Function

Figure: Performance of ours and 2SPSA in terms of normalized distance
[f(θ̂k)−f(θ∗)]/[f(θ̂0)−f(θ∗)] average across 50 independent replicates. Both
algorithms use twelve ZO queries per iteration, so query complexity aligns with
iteration complexity. The underlying loss function is the skew-quartic function
with d = 20, and the noisy observation is corrupted by N(0, 0.1) noise.
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Numerical Study Black-Box Binary Classification

[HTC20] uses PHISHING dataset for black-box classification.

Figure: Performance of ours and 2SPSA in terms of the true loss function
average across 25 independent replicates. Both algorithms use twelve ZO
queries per iteration, so query complexity aligns with iteration complexity. A
zero loss function is equivalent to 100% classification correctness.
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Summary

Summary
Stein’s Identity helps in validating Hessian estimators
• reduced ZO query compared with 2SPSA
• reduced random perturbation generation, gain tuning

Future Work
• extension to case where unbiased direct measurements of gradient

information is available
• extension for other possible distribution for random perturbation
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