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Background – rare events

Rare events encompass many phenomena in nature:

chemical reactions

conformational change of biomolecules

(a) Chemical reaction (b) Conformational change

The vibration of chemical bonds occurs on the time scale of 10−12 to 10−15

seconds, but a typical reaction may take seconds or longer to occur.
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Background – intuition

Intuitions of the system dynamics [1]

A potential function is defined on the phase space of the system.

The two metastable states (the reaction state A and the product state B)
are two local minima of the potential function.

There is some barrier between A and B.

The system is subject to some noise, which leads to transitions from one
state to another.

The transition is rare since the noise is relatively small compared to the
barrier.
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Background – existing models

How to model the dynamics between A and B?
transition mechanism, reaction rate, etc.

Transition state theory (TST)
In order to go from A to B, the system has to go to a saddle point on the
potential energy landscape

Large deviation theory (LDT)
With LDT, you can calculate the probability that a diffusion process stays
in a neighborhood of a particular path. The most probable transition path
can be defined.
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Background – limitations

Limitations of TST and LDT

In TST, it is assumed that every crossing of the transition state leads to a
transition, which may overestimate the reaction rate.

The barriers may be entropic (especially when the dimension of the phase
space is high), so the saddle point may not play the role of a transition
state.

There can be an ensemble of paths contributing to the transition (instead
of the most probable path itself).
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Problem setting – Transition path theory (TPT)

System dynamics:

dxt = −∇V (xt) dt+
√

2β−1dwt (over-damped langevin)

Backward operator:
L = β−1∆−∇V · ∇

Forward operator:
L∗φ = β−1∆φ+∇ · (V φ)

Equilibrium distribution:

ρ(x) =
1

Zβ
exp(−βV (x)) (L∗ρ = 0)
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Problem setting – Transition path theory (TPT)

Committor function:

q(x) = P(τB < τA | x0 = x),

where τA and τB are the hitting times for the sets A and B, respectively.

Fokker-Planck (backward Kolmogorov) equation:

(−1/β∆ +∇V · ∇)q = 0 in Ω\(A ∪B), q(x)|∂A = 0, q(x)|∂B = 1.
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Problem setting – Transition path theory (TPT)

Why is the committor function important?

Transition rate:

νR = β−1

∫
Ω

|∇q(x)|2ρ(x)dx

Probability density of reactive trajectories:

ρR(x) ∝ q(x)(1− q(x))ρ(x)

Reactive current
JR(x) = β−1ρ(x)∇q(x)
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Difficulty

High-dimensionality of phase space
Classical methods such as finite difference, finite element methods suffer
from the curse of dimensionality.

Singularity of the committor function

In the high T regime, the committor function can be steep near A, B
since the FP equation converges heuristically to a Laplace equation.

In the low T regime, there is typically a sharp interface between A and B.

Enforcement of the boundary conditions
Large penalty terms may lead to a ill-conditioned problem, and
reparametrization results in a much more complicated equation.
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Solutions in previous work [2]

High-dimensionality of phase space
Parameterize the committor function with a neural network, and solve the
optimization problem derived from the variational form.

Singularity of the committor function

Use tanh activation for the last layer of the neural network, and add
explicit singularity terms

qθ(x) := nθA(x)SA
(
x− yA

)
+ nθB (x)SB

(
x− yB

)
+ nθ0(x)

Enforcement of the boundary conditions
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Solutions in previous work [2]

Instead of the strong form:

(−1/β∆ +∇V · ∇)q = 0 in Ω\(A ∪B), q(x)|∂A = 0, q(x)|∂B = 1,

we can work on the variational form:

argmin
q

∫
Ω\(A∪B)

|∇q(x)|2ρ(x)dx, q(x)|∂A = 0, q(x)|∂B = 1.

In [2], the boundary conditions are enforced through penalty functions

argmin
θ∈Rp

∫
Ω\(A ∪ B)

|∇qθ(x)|2 ρ(x)dx+c̃

∫
∂A

qθ(x)2dm∂A(x)+c̃

∫
∂B

(qθ(x)− 1)2 dm∂B(x),



Motivation for [3]

In the existing method,

explicit differentiation is needed in the objective function, and

the penalty coefficient needs to be carefully tuned since the boundary
condition is enforced solely through the penalty terms.

Intuitively, we can consider
(I − eδL)q = 0,

instead of
Lq = 0,

then the explicit differentiation is removed and Monte Carlo methods can be
applied to simulate the semigroup operator eδL.
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Justification

Consider the Langevin process starting from a point x ∈ Ω

dxt = −∇V (xt) dt+
√

2β−1dwt,

x0 = x.
(1)

Proposition 1

When ∇V is bounded and Lipschitz continuous on Rd, the committor function
q satisfies the following semigroup formulation:

q(x) = (Pq)(x) in Ω\(A ∪B), q|∂A = 0, q|∂B = 1, (2)

where the semigroup operator P is defined as

(Pf)(x) := Ex (f (xτ∧δ)) , (3)

where Ex is the expectation taken with respect to the law of the process (1)
and τ = τA ∧ τB .

Proof.
Dynkin’s formula [4].
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Resolving the boundary conditions

We can split the semigroup operator P into two parts.

(Pq)(x) = Ex (q (xτ∧δ)) = Ex (q (xτ∧δ)1{δ<τ}
)

+ Ex (q (xτ∧δ)1{δ≥τ}
)

= Ex (q (xδ)1{δ<τ}
)

+ Ex (q (xτ )1{δ≥τ}
)

= Ex (q (xδ)1{δ<τ}
)

+ Ex (r (xτ )1{δ≥τ}
)

= (P iq)(x) + (P br)(x),

(4)

where r is a function defined on ∂A ∪ ∂B with r(x)|∂A = 0 and r(x)|∂B = 1.

The equation (2) can then be expressed by

(I − P i)q(x)− (P br)(x) = 0.

Note that the boundary condition is naturally included in the P b term.
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Positive definiteness and the new variational form

We have the follwing property on the positive definiteness of P i:

Proposition 2

P i is a symmetric operator on L2
ρ(Ω\(A ∪B)), in other words,

〈u, P iv〉ρ = 〈P iu, v〉ρ, where 〈f, g〉ρ =
∫

Ω\(A∪B)
f(x)g(x)ρ(x)dx is the inner

product of the Hilbert space L2
ρ(Ω\(A ∪B)).

Based on Proposition 2, we can derive the following variational formulation:

min
q

1

2

∫
Ω\(A ∪ B)

q(x)
(

(I − P i)q(x)
)
ρ(x)dx−

∫
Ω\(A ∪ B)

q(x)P br(x)ρ(x)dx (5)
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Nonlinear parametrization

We parametrize the committor function by an NN qθ,

then the optimization problem in terms of θ is

min
θ

1

2

∫
Ω\(A ∪ B)

qθ(x)
(

(I − P i)qθ(x)
)
ρ(x)dx−

∫
Ω\(A ∪ B)

qθ(x)P br(x)ρ(x)dx

+
c

2

∫
qθ(x)2dmA(x) +

c

2

∫
(qθ(x)− 1)2dmB(x),

(6)

where we include the penalty terms to achieve a better numerical performance.
We will show in the numerical experiments that the solutions obtained are not
sensitive to the penalty coefficient.
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Derivatives

In the application of SGD type methods to the optimization problem (6), we
need to calculate the derivative for each of the terms.

The first two terms (using the symmetry stated in Proposition 2):∫
Ω\(A ∪ B)

∇θqθ(x)
(

(I − P i)qθ(x)
)
ρ(x)dx−

∫
Ω\(A ∪ B)

∇θqθ(x)P br(x)ρ(x)dx

=

∫
Ω\(A ∪ B)

∇θqθ(x)
(
qθ(x)− Ex (qθ(xδ)1{δ<τ})− Ex (r(xτ )1{δ≥τ}

))
ρ(x)dx

= Ex∼ρ∇θqθ(x)
(
qθ(x)− Ex (qθ (xδ)1{δ<τ}

)
− Ex (r(xτ )1{δ≥τ}

))
,

(7)
so an unbiased estimator is

∇θqθ(x)
(
qθ(x)− qθ(xδ)1{δ<τ} − r(xτ )1{δ≥τ}

)
. (8)

For the third and fourth terms, unbiased estimators of their gradients are

c∇θqθ(xA)qθ(xA), c∇θqθ(xB)(qθ(xB)− 1), (9)

respectively, where xA ∼ mA and xB ∼ mB .
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Monte Carlo sampling

In order to obtain the unbiased estimators above, we need to give samples for
x ∼ ρ, the corresponding xδ, and the indicators 1{δ<τ}, 1{δ≥τ=τA} and
1{δ≥τ=τB}.

x ∼ ρ:
In this paper, the potential is assumed to be confining, so the Langevin
dynamics is ergodic, and x ∼ ρ can be approximated by x̃N∆t for a
sufficiently small ∆t and sufficiently large N with an arbitrary x̃0, where
x̃N∆t is obtained by the Euler-Maruyama scheme:

x̃(n+1)∆t = x̃n∆t −∇V (x̃n∆t)∆t+
√

2β−1w∆t.

xδ
Given x ∼ ρ, we approximate xδ by Euler-Maruyama scheme as well:

xδ = x−∇V (x)δ +
√

2β−1wδ. (10)

Indicators:
The following approximations are used for the indicators:

1{δ<τ} = 1 if xδ ∈ Ω\A ∪B,
1{δ≥τ=τA} = 1 if xδ ∈ A, 1{δ≥τ=τB} = 1 if xδ ∈ B.

Multi-step Euler-Maruyama can be adopted to improve accuracy.
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Numerical experiment I – Double well potential

The double well potential we consider is given by:

V (x) =
(
x2

1 − 1
)2

+ 0.3

d∑
i=2

x2
i (d = 10). (11)

The regions A and B are defined as

A =
{
x ∈ Rd | x1 ≤ −1

}
, B =

{
x ∈ Rd | x1 ≥ 1

}
.

T E No. training samples Batch size No. testing samples

0.5 0.014 1.5× 105 1000 4.0× 105

0.2 0.011 8.0× 105 1000 8.0× 105

Table 1: Results for the double-well potential problem.

Here the error E is defined by E =
‖qθ−q∗‖L2

ρ(Ω\A∪B)

‖q∗‖
L2
ρ(Ω\A∪B)

, where q∗ is the ground

truth.
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Numerical experiment I – Double well potential

Figure 1: The committor function for the double-well potential along x1 dimension
when T = 0.5 for an arbitrarily chosen (x2, . . . , xd).

The final error is not sensitive to the parameter δ.
If δ = 0.01, 0.03, 0.05 are chosen instead, the corresponding final errors are
E = 0.013, 0.013, 0.013, respectively.
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Sensitivity of the penalty coefficient

(a) Training loss of the proposed
method

(b) Training loss of the method in [2]

Figure 2: Comparison of the training process of the proposed method and [2]’s
method. Here cnorm stands for the normalized penalty coefficient.

In Fig. 2a, the approximate solution converges quickly and the final relative
error is rather small, regardless of the choice of penalty coefficients.

From Fig. 2b, we can see that the training process and final result is
sensitive to cnorm.
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Numerical experiment II – Rugged-Mueller potential

The rugged-Mueller potential is given by:

V (x) = Ṽ (x1, x2) +
1

2σ2

d∑
i=3

x2
i ,

where Ṽ is the 2-dimensional rugged Mueller potential. The domain of interest
Ω of this example is [−1.5, 1]× [−0.5, 2]× Rd−2 and the regions A and B are
the following two cylinders:

A =
{
x ∈ Rd |

√
(x1 + 0.57)2 + (x2 − 1.43)2 ≤ 0.3

}
,

B =
{
x ∈ Rd |

√
(x1 − 0.56)2 + (x2 − 0.044)2 ≤ 0.3

}
.

(a) T = 22 (b) T = 40

Figure 3: The equilibrium distributions for the rugged-Mueller potential.
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V (x) = Ṽ (x1, x2) +
1

2σ2

d∑
i=3

x2
i ,
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Numerical experiment II – Rugged-Mueller potential

The results are summarized in Table 2.

(T, σ) E No. training samples Batch size No. testing samples

(22, 0.05) 0.024 6.0× 105 5000 1.0× 106

(40, 0.05) 0.023 6.0× 105 5000 1.0× 106

Table 2: Results for the rugged-Muller potential problem.

(a) equilibrium distribution (b) T = 22 committor function (c) T = 22 NN approximation

Figure 4: Comparisons between the NN represented committor functions and the
ground truth when T = 22.
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Numerical experiment III – Ginzburg-Landau potential

The Ginzburg-Landau energy in one dimension is defined as:

Ṽ [u] =

∫ 1

0

λ

2
u2
x +

1

4λ
(1− u2)2dx, (12)

where λ is a small positive parameter and u is a sufficiently smooth function on
[0, 1] with boundary conditions u(0) = u(1) = 0.

u(x) can be uniformly discretized by U = (U1, · · · , Ud) defined on a uniform
grid on [0, 1] with the boundary conditions U0 = Ud+1 = 0. Then the
continuous Ginzburg-Landau energy is approximated by:

V (U) := Ṽh[U ] =

d+1∑
i=1

λ

2

(
Ui − Ui−1

h

)2

+
1

4λ
(1− U2

i )2, (13)

where the grid size h = 1/(d+ 1).
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where the grid size h = 1/(d+ 1). In this experiment we use h = 1/50 and the
dimension d = 49.
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Numerical experiment III – Ginzburg-Landau potential

V (U) has two local minima u±(·) as shown in Fig. 5. The regions A and B are
taken as the spheres {U : ||U − u±|| ≤ r} with r = 3.
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(a) Local minimizer u−
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(b) Local minimizer u+

Figure 5: Two local minima of the energy (15) with λ = 0.03. (a): u−, (b): u+.
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Numerical experiment III – Ginzburg-Landau potential

Verification of the result

Γ 1
2
,ε = {U : |qθ(U)− 1

2
| < ε}

We verify the numerical result in the following way:

Identify m states {x̃j}mj=1 on Γ 1
2
,ε,

for each x̃j , generate N trajectories according to (1),

denote the number of trajectories that start from x̃j and reach B before A
as nj ,

compare the distribution of n/N with N ( 1
2
, (4N)−1), i.e. the normal

distribution with mean 1
2

and variance (4N)−1.
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Numerical experiment III – Ginzburg-Landau potential

The comparison of the distribution of n/N with N ( 1
2
, (4N)−1) is given in the

following figures. In the actual experiment with ε = 0.01, m = 120, and
N = 100, the resulting statistics contain nj/N for j = 1, 2, . . . , 120.

(a) The empirical PDF versus
the PDF of N ( 1

2 , 1/400).
(b) Q–Q plot of {nj/N}120

j=1

versus N ( 1
2 , 1/400).
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The comparison of the distribution of n/N with N ( 1
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following figures. In the actual experiment with ε = 0.01, m = 120, and
N = 100, the resulting statistics contain nj/N for j = 1, 2, . . . , 120.

(c) The empirical PDF versus
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versus N ( 1
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Conclusion

Summary:

We show that the committor function satisfies an integral equation based
on the semigroup of the Fokker-Planck operator.

The explicit gradient is removed and the boundary conditions are handled
naturally.

The integrals in the variational form is approximated via sampling, and the
committor function is solved for using NN parameterization and SGD.

The convergence of the training process is guaranteed in the lazy training
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The resulting algorithm is shown to be faster and less sensitive to the
penalty parameter then the previous work.
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Conclusion

Future work:

Integrate importance sampling techniques in the sampling process.

Adopt higher order integration schemes instead of Euler-Maruyama.

Apply the proposed method to other high-dimensional PDEs and
eigenvalue problems that possess probabilistic interpretations (See our
more recent work [5]).
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