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Reinforcement LearningReinforcement Learning

 



Markov Decision ProcessesMarkov Decision Processes

Model the environment as a Markov Decision Process (MDP)

 A compact state space  and an action space 

 A transition kernel  (response of the environment)

 A bounded reward  (payoff of an action)

∙  

∙ P  :   ×  → ()1
+

∙ R  :   ×  → ℝ

TicTacToe: , , . = {0, 1,−1}9  ⊆ {1, … , 9} R(s, a) = {
1   if win

−1 if lose

Model the agent through its strategy:

 A policy  (actions chosen by agent at state )∙ π  :   → ()1
+ s

For each  we have an effective kernel π (s, d ) = ∫ P(s, a, d )π(s, da)Pπ s
′

s
′



Value FunctionsValue Functions

Objective: fixing  and a policy  learn the expected future rewardγ ∈ (0, 1) π

(s) := [ R( , ) = s] (value function)V ∗
π 𝔼π ∑

k=0

∞

γ k
sk ak

∣
∣∣ s0

For fixed  the value function must satisfy

In other words,  is a fixed point of the Bellman operator

π

(s)V ∗
π = [R( , ) + γ(R( , ) + γR( , ) + …) = s]𝔼π s0 a0 s1 a1 s2 a2

∣
∣∣ s0

= [R( , ) + γ R( , ) = s] = [R( , ) + γ ( ) = s]𝔼π s0 a0 ∑
k=0

∞

γk
sk ak

∣
∣∣s0 𝔼π s0 a0 V ∗

π s1
∣
∣∣ s0

(s)V ∗
π

V(s)T
γ = [R( , ) + γV( ) = s]𝔼π s0 a0 s1

∣
∣∣ s0



Temporal-difference learningTemporal-difference learning

The operator

V(s) = [R( , ) + γV( ) | = s]T
γ

𝔼π s0 a0 s1 s0

is a contraction in  where  is the invariant measure of  (assumed unique

and with full support)

(μ)L
2 μ Pπ

This suggests the Temporal-Difference (TD) update with stepsize :β

V(s) ← V(s) + β( V(s) − V(s))T
γ

For a parametric approximation  of  with  the update becomesVw V w ∈ 

w(t) = [D (s) ( (s) − (s))]
d

dt
𝔼μ V

⊤
w(t)

T
γ
Vw(t) Vw(t)



Divergences in TD learningDivergences in TD learning

w(t) = [D (s) ( (s) − (s))]
d

dt
𝔼μ V

⊤
w(t)

T
γ
Vw(t) Vw(t)

 

(TsitsiklisVanRoy97)



Lazy trainingLazy training

We scale the approximating function as  for large → αVw Vw α

The parametric update becomes

w(t) = [D ( ) ( α ( ) − α ( ))]
d

dt

1

α
𝔼

′
μ V

⊤
w s

′
T
γ

Vw s
′

Vw s
′

And the functional update for large  isα

α (s) = [D (s) ⋅ D ( ) ( α ( ) − α ( ))]
d

dt
Vw(t) 𝔼

′
μ Vw(t) V

⊤
w(t)

s
′

T
γ

Vw(t) s
′

Vw(t) s
′

(ChizatBachOyallon19)



Lazy trainingLazy training

We scale the approximating function as  for large → αVw Vw α

The parametric update becomes

w(t) = [D ( ) ( α ( ) − α ( ))]
d

dt

1

α
𝔼

′
μ V

⊤
w s

′
T
γ

Vw s
′

Vw s
′

And the functional update for large  isα

α (s) ≈ [D (s) ⋅ D ( ) ( α ( ) − α ( ))]
d

dt
Vw(t) 𝔼

′
μ Vw(0) V

⊤
w(0)

s
′

T
γ

Vw(t) s
′

Vw(t) s
′

(ChizatBachOyallon19)



Fixing a divergent exampleFixing a divergent example

α = 1 α ≫ 1



Convergence of lazy trainingConvergence of lazy training

Let  be the RKHS norm induced by , let  be the 

projection on such RKHS and assume that  is s.t. 

‖ ⋅ ‖0 D DVw(0) V
⊤
w(0)

Π0 (μ)L
2

w(0) = 0Vw(0)

Theorem 1a (Overparametrized, Informal): 


There exist  s.t. for any
  we have for all  that, λ(γ) > 0α0 α > α0 t ≥ 0

‖ − α ≤ ‖ − αV ∗
π Vw(t)‖

2
0

V ∗
π Vw(0)‖

2
0
e
−λ(γ)t

Theorem 1b (Underparametrized, Informal):


There exists  such that for any 
the approximation
  converges

exponentially fast to a locally (in ) attractive
fixed point , for which 

> 0α0 α > α0 αVw

 V ̃ ∗
π

‖ − < ‖ −V ̃ ∗
π V ∗

π ‖μ
1

1−γ Π0V ∗
π V ∗

π ‖μ



Neural Networks as function approximatorsNeural Networks as function approximators

We consider single hidden layer neural

networks: ,

for


Here the weights  are initialized iid

and  is a Lipschitz smooth activation

function (bounded, bounded derivative)

w = (ϑ(i))N

i=1

(s) = σ(s; )Vw

1

N ∑
i=1

N

ϑ
(i)

0
ϑ̄

(i)

= ( , ) ∈ Θ (weights)ϑ(i) ϑ
(i)

0
ϑ̄

(i)

{ }ϑ(i)

σ

(ChizatBach18), (Chizat19), (RotskoffVanDenEijnden18), (MeiMontanariNguyen18), (NguyenPham20),

(SirignanoSpiliopoulos18), (Wojtowytsch20), ...



Lazy vs mean-field initializationLazy vs mean-field initialization

The scaling (in ) of  at initialization in
N ϑ
(i)

0
(s) = σ(s; )Vw

1
N
∑N

i=1 ϑ
(i)

0
ϑ̄

(i)

determines if a network behaves like a lazy learner:

(CaiYangLeeWang19), (ChizatBachOyallon19), (GhorbaniMeiMisiakiewiczMontanari20),

(JacotGabrielHongler18), (SirignanoSpiliopoulos19) ...

 When  (e.g. Xavier initialization) we have

for , resulting in the lazy (or NTK) regime 


with kernel

 When  we are in the mean-field regime

∙ (0) ∼  (0, N)ϑ
(i)

0

(s) = α(N) σ(s; ) for α(N) =Vw

1

N ∑
i=1

N

ϑ̃ (i)
0 ϑ̄

(i)
N‾‾√

(0) ∼  (0, 1)ϑ̃ (i)
0

(s, ) = [σ(s ⋅ )σ( ⋅ )] + [(s ⋅ ) (s ⋅ ) ( ⋅ )]Kν0
s

′
𝔼ν0

ϑ̄ s
′ ϑ̄ 𝔼ν0

s
′ ϑ2

0
σ ′ ϑ̄ σ ′

s
′ ϑ̄

∙ (0) ∼  (0, 1)ϑ
(i)

0



Mean-field regimeMean-field regime

We express the approximator through (⋅) = (⋅) ∈ (Θ)ν(N) 1
N
∑N

i=1 δϑ(i) 1
+

(s) = σ(s; ) = σ(s; ) (dϑ)Vν(N)

1

N ∑
i=1

N

ϑ
(i)

0
ϑ̄

(i)

∫
Θ

ϑ0 ϑ̄ ν(N)

Then we can write the set of ODEs for the update of 

as a Vlasov PDE for the evolution of :

ϑ(i)

(τ) = [ (s) ( (s) − (s))]
d

dt
ϑ(i)

𝔼μ ∇ϑ(i) Vw(τ) T
γ
Vw(τ) Vw(τ)

=νt ν
(N)
t

(ϑ) = div ( (ϑ) [ ( σ(s; )) ( (s) − (s))])
d

dt
νt νt 𝔼μ ∇ϑ ϑ0 ϑ̄ T

γ
Vνt

Vνt

(ChizatBach18), (Chizat19), (RotskoffVanDenEijnden18), (MeiMontanariNguyen18), (NguyenPham20),

(SirignanoSpiliopoulos18), (Wojtowytsch20), ...



Mean-field regime: convergenceMean-field regime: convergence

With  we write the evolution of  as(⋅) = σ(⋅; ) ν(dϑ)Vν ∫
Θ
ϑ0 ϑ̄ ν

(ϑ) = div ( (ϑ) [ ( σ(s; )) ( (s) − (s))])
d

dt
νt νt 𝔼μ ∇ϑ ϑ0 ϑ̄ T

γ
Vνt

Vνt

Proposition 2 (  convergence): Let  obey the Temporal

Difference ODEs
and  as  then for every  we

have  solving the above PDE.

Theorem 2 (Optimality): Let  be dense in ,
  have full

support in  and assume that  converges
to  as ,
then  -a.e.

N → ∞ {ϑ
(i)
t }N

i=1

→ ∈ (Θ)ν
(N)

0
ν0 2 N → ∞ t > 0

→ν
(N)
t νt

span(σ(⋅; ))ϑ̄ (, μ)L
2 ν0

Θ νt ν∗ t → ∞ =Vν∗ V ∗
π μ



Numerical resultsNumerical results

lazy mean-field



SummarySummary

The training dynamics of wide, single layer neural networks trained with

Temporal-Difference learning are:

 Convergent (but not always optimal) in the lazy regime

 Optimal (but not provably convergent) in the mean-field regime

∙

∙

Open Questions:

 Convergence of the mean-field dynamics

 Finite-sample anaysis (stochastic approximation)

 Multilayer Neural Networks

 Other algorithms

∙

∙

∙

∙




