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Reinforcement Learning




Markov Decision Processes

Model the environment as a Markov Decision Process (MDP)

e A compact state space S and an action space A
e A transition kernel P : S X A — ./\/l_lF (S) (response of the environment)
e A bounded reward R : S X A — R (payoff of an action)

1 1f win

TicTacToe: S = {0,1,—-1}°, 4 C {1,...,9}, R(s,a) = { i lose”

Model the agent through its strategy:
e Apolicyn : S — M}r (A) (actions chosen by agent at state )

For each 7 we have an effective kernel P,(s,ds") = [ P(s,a,ds")n(s, da)



Value Functions

Objective: fixing y € (0, 1) and a policy x learn the expected future reward

Viis) = [, Z ykR(sk,ak) ‘ So = S (value function)
k=0

For fixed 7 the value function must satisfy

Vi(s) = Ex |R(s0,@0) + r(RGs1, @) + 1RG5z a2) + ) | 50 = 5]

= E, [R(So, ap) +y Z y*R(st, ak)‘SO = S] = E, [R(So, ap) +yVi(s1) ‘ S0 = S]
k=0

In other words, V; (s) is a fixed point of the Bellman operator

T'V(s) = E, [R(so,ao) + yV(sy) ‘ So = s]



Temporal-difference learning

The operator
T"V(s) = E; [R(s0,a0) +yV(s1) | so = s]

is a contraction in L?(u) where y is the invariant measure of P, (assumed unique
and with full support)

This suggests the Temporal-Difference (TD) update with stepsize f:
V(s) « V(s) + p(T7V(s) — V(s))

For a parametric approximation V,, of V with w € W the update becomes

d

Zw(t) = Ey DV (5) (T Vit (9) = Vi ()]



Divergences in TD learning
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Zw(t) = E, [DV], () (T7Vao(s) = Vi ()]

(TsitsiklisVanRoy97)



Lazy training

We scale the approximating function as V,, — aV,, for large a

The parametric update becomes

d 1
—w() = —E, IDV,J (s") (T aVyu(s") — aVi(s"))]
And the functional update for large a 1s
d

—aVu(9) = B [DVis(5) - DV 1y (") (T @V (8') = Vi (1)

W F Tv<w<o>>F

(ChizatBachOyallon19)



Lazy training

We scale the approximating function as V,, — aV,, for large a

The parametric update becomes

d 1
—w(t) = =, [DV,)(s') (T"aV,(s") — aViu(s"))]
dt a
And the functional update for large a 1s
d

—-aVu(8) & B}, [DVio)(s) - DV [ (8") (T" @V (") = @V (s))]

(ChizatBachOyallon19)



Fixing a divergent example




Convergence of lazy training

Let || - [lo be the RKHS norm induced by DV, DV, let Ty be the L (u)

projection on such RKHS and assume that w(0) 1s s.t. V), ) = 0

Theorem 1a (Overparametrized, Informal):
There exist ag, A(y) > 0 s.t. for any @ > ag we have for all ¢ > O that

)
Vi = aVupll3 < IVE = aVioll2e

Theorem 1b (Underparametrized, Informal):
There exists ag > 0O such that for any @ > ag the approximation aV,, converges

exponentially fast to a locally (in W) attractive fixed point V;, for which
Ve = Vill, < 15 1Mo Vi = VZ



Neural Networks as function approximators

We consider single hidden layer neural

networks: w = (9N |

L § 0. g0
Vils) = N 9 a(s; )
i=1

for 90 = (89, 3") € © (weights)

Output

Here the weights {9} are initialized iid
and o 1s a Lipschitz smooth activation
function (bounded, bounded derivative)

(ChizatBach18), (Chizatl9), (Rotskoff VanDenEijnden18), (MeiMontanariNguyen18), (NguyenPham?20),
(SirignanoSpiliopoulos18), (Wojtowytsch20), ...



LLazy vs mean-field initialization

The scaling (in N) of 19g) at initialization in V,,(s) = % Zi\il z9g) o(s; v )
determines 1f a network behaves like a lazy learner:

e When 193 ) (0) ~ N(0,N) (e.g. Xavier initialization) we have

1 < =G (i
V() = a)~ Y 85 o(s:97)  for aN) = VN
¥ i=1
for 98) (0) ~ N(0, 1), resulting in the lazy (or NTK) regime
with kernel

K, (s,5") = E,, |o(s - Do(s" - | + E,, |(s-5)956"(s - Do’ (s - )|
e When 19g) (0) ~ N'(0,1) we are in the mean-field regime

(CaiYanglLeeWangl19), (ChizatBachOyallon19), (GhorbaniMeiMisiakiewiczMontanari20),
(JacotGabrielHongler18), (SirignanoSpiliopoulos19) ...



Mean-field regime
We express the approximator through vV () = % Zﬁl Ogi () € M}r (©)
(A _
Vin(s) = Z:, 90 o(s:97) = /@ 9o0(s; O™ (d9)

Then we can write the set of ODE:s for the update of 9@

d ..
—-8@) = By [V Vo) (9) (T Vi (9) = Vi (9))]
as a Vlasov PDE for the evolution of v; = y@:

d —
—u(8) = div (1(9) E, [Va(®00(s: 9) (T7V,,(5) = V., (5))])

(ChizatBach18), (Chizatl9), (Rotskoff VanDenEijnden18), (MeiMontanariNguyen18), (NguyenPham?20),
(SirignanoSpiliopoulos18), (Wojtowytsch20), ...



Mean-field regime: convergence

With V,(:) = f® 9o0(-; 9) v(d9) we write the evolution of v as

d : .
—u(9) = div (11(9) E, [Va(9o0(s: 9) (T7V,, () = V., (9)])
Proposition 2 (N — oo convergence): Let {89 }f.i ; obey the Temporal

Difference ODEs and 1/(()N) — 1y € P>(®) as N — oo then for every > 0 we

have vgm — 1; solving the above PDE.

Theorem 2 (Optimality): Let span(o(-; 9)) be dense in L?(S, u), vo have full
support in ® and assume that v; converges to v* ast — oo, then V,» = V u-a.e.
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Summary

The training dynamics of wide, single layer neural networks trained with
Temporal-Difference learning are:
e Convergent (but not always optimal) in the lazy regime

e Optimal (but not provably convergent) in the mean-field regime

Open Questions:

e Convergence of the mean-field dynamics
 Finite-sample anaysis (stochastic approximation)
e Multilayer Neural Networks

 Other algorithms






