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Background:
Quantum Approximate Optimization Algorithm
(QAOA)

e QAOA was first proposed by Farhi et al.!

» Inspired by Quantum Adiabatic Algorithm (QAA)

» originally, approximate solutions to combinatorial optimization
problems, e.g. max-cut problem

> the extension of QAOA: Quantum Alternating Operator Ansatz

e the idea of using the alternating gate sequences is quite generic, one
simple kind of parameterized quantum circuits (PQCs), or variational
circuit ansatz (VQCs).

e focus on the problem of state transfer (or state preparation) problem:

Given initial quantum state [¢);) € H, “"z \/ ¢
Find the control to reach target state |1..)

TEdward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A Quantum Approximate

Optimization Algorithm”. In: arXiv preprint arXiv:1411.4028 (2014). s



state preparation problem

> Ising models

N N
H=H\+Hy,  Hi=» JSi1Si+h.S;, Hy=Y hsSi,

i=1

> Heisenberg model
N
H=H+H,,  Hi= JZ SEaSi+SY L SY), Ha =AY S S
=1 j=1

e intial state [¢);) =1 - -+ 1), and target state is the ground state of H
o QAOA Ansatz:

1) = Ul BY2y) ) = o Mafoe 0 L o iMaBh it |y

o Energy (Fidelity):
£y, BY-1) = (il U HU:) /N (F({a, Bi}) = | (| Ul * )
e Optimization:
| | I | I {(x“ﬁ o= drgmm S({aj,,@]}7 1) <argmax F({al,,ﬁl}fl)>
{8}y {apBi_
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RL approach

RL approach was (first) introduced in literature? (tabular Q learning).
e RL is model-free/universal, adaptive, autonomous

e recent work using the gradient®*: expand the gradient in terms of linear
comb. of Pauli & importance sampling

e in the following discussion, we focus on the derivative free methods.
e reward (R; =0,t< 1)

Ry = F({au Bi}1) = | (W] Ufcvi, B ) wa) | -

2Marin Bukov et al. “Reinforcement learning in different phases of quantum control”. In:
Physical Review X 8.3 (2018), p. 031086.

3Ryan Sweke et al. “Stochastic gradient descent for hybrid quantum-classical optimization”.
In: Quantum 4 (2020), p. 314.

4Aram Harrow and John Napp. “Low-depth gradient measurements can improve
convergence in variational hybrid quantum-classical algorithms”. In: arXiv preprint
arXiv:1901.05374v1 (2019).
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Reinforcement Learning
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RLAQAOA
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CD driving method

Goal: introduces an auxiliary counter-diabatic (CD) Hamiltonian drive on
top of a target Hamiltonian to suppress all transitions between eigenstates.

—_— 0 D e———
Consider a state |1), evolving under a time dependent Hamiltonian Hy(\(t))

oy [y = Ho(A()) [¥) , [¥i) = [das(A = 0)),[¢s) = [Yas(A = 1)) (1)

Go to the rotating frame: (Hamiltonian remains stationary)
unitary transformation U(A(%)) — instantaneous eigenbasis of Hamiltonian
wave function (J3) = U(X)|4)) satisfies effective Schrodinger equation:

o) = (Ho(A(1)~ A ) 1) 2)

Ho(\(t)) = UTHy(\(1)) U, Ay = iUTO\ U
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CD driving method (Cont'd)

Specifically, the Hamiltonian picks up an extra contribution and becomes
HSff = Hy— My, (3)
The idea of the CD driving is to evolve the system with the Hamiltonian
Hep(t) = Ho+AA

In the moving frame HYE (#) = Hy is stationary and no transitions occur.
—_— e

Transitionless Driving: counter-diabatic driving®®

Hep(t) = Ho(A(1)) + AA(A(1), A(0) =0 A(T)=0

5Dries Sels and Anatoli Polkovnikov. “Minimizing irreversible losses in quantum systems by
local counterdiabatic driving”. In: Proceedings of the National Academy of Sciences 114.20
(2017), E3909-E3916.

6Narendra N. Hegade et al. “Shortcuts to Adiabaticity in Digitized Adiabatic Quantum
Computing”. In: Physical Review Applied 15.2 (2021).

7/15



CD driving (illustration of water delivery)

A: Static B: Moving C: Counter diabatic

R

Goal: to deliver the water to the table with a high fidelity, i.e. without
spilling or splashing it.

“s

the glass should be vertical in the beginning of the process, i.e. when
the waiter is leaving the bar and at the end of the process, when the
waiter reaches the table.

(A) — adiabatic: slowly moves along the shortest path (geodesic) and
keeps the tray vertically at all times. slow

(C) — counter-diabatic: tilting the tray by applying an opposite force
against the pseudo-force. faster

8/15



CD inspired generalized ansatz

e Examples of gauge potentials in counter-diabatic driving”®:
Hep (1) = HO() + M), A0) =0 A(T) =0

7Sels and Polkovnikov, “Minimizing irreversible losses in quantum systems by local
counterdiabatic driving”.

8Hegade et al., “Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing”. os



CD inspired generalized ansatz

e Examples of gauge potentials in counter-diabatic driving”®:
Hop () = H(H) + A (1), A(0) =0 A(T) =0
» single qubit: H(\) = o” + \o”, gauge potential: A(A\) ~ o

7Sels and Polkovnikov, “Minimizing irreversible losses in quantum systems by local
counterdiabatic driving”.

8Hegade et al., “Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing”. os



CD inspired generalized ansatz

e Examples of gauge potentials in counter-diabatic driving”®:
Hep (1) = HA(M) + A1), A0) =0 A(T)=0
» single qubit: H(\) = o” + \o”, gauge potential: A(A\) ~ o
» spin chain: H(\) = Zszl 82157 + S5 4+ ASj, asymptotic expansion:

AR = ;a0 8!+ BN (871 SY+ 8% 87) +7(N) (Sipa S+ 8%, 87) +++-

7Sels and Polkovnikov, “Minimizing irreversible losses in quantum systems by local
counterdiabatic driving”.
8Hegade et al., “Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing”.
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CD inspired generalized ansatz

e Examples of gauge potentials in counter-diabatic driving”®:
Hep (1) = HA(M) + A1), A0) =0 A(T)=0
> single qubit: H(A) = o® + Ao”, gauge potential: A(X) ~ o¥
» spin chain: H(\) = Zj\;l 82157 + S5 4+ ASj, asymptotic expansion:

AR = ;a0 8!+ BN (871 SY+ 8% 87) +7(N) (Sipa S+ 8%, 87) +++-

e 5-mode “bang-bang” protocols

Uo (o) = exp (—iao Ho) , Ho = 3 ;55,155 + 5%

Ui (a1) = exp (—ion Hy) , Hy = 3, 55

Us (a2) = exp (—iag Hs) , Hy = Z/.bﬂ/.’

Us (a3) = exp (—ias Hs) , Hy = Zj 197+ SﬁlS?
Uy (oq) = exp (—iceg Hy) , Hy = Zj S?HSj + S;HS;%’

e the number of gates in the sequence: |A|(|A] — 1)9~!

7Sels and Polkovnikov, “Minimizing irreversible losses in quantum systems by local
counterdiabatic driving”.
8Hegade et al., “Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing”.
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When driving meets RL




RL-QAOA (ancestral sampling)

e Robust autoregressive hybrid policy: (1) = g (7°) 7y (7¢)
e Hybrid policy gradient:

T0) =B |G 0,4 + 0°(r756,6)| + 55750+ )

Heads

Base
Layer
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RL-QAOA (ancestral sampling)

e Robust autoregressive hybrid policy: (1) = g (7°) 7y (7¢)
e Hybrid policy gradient:

T0) =B |G 0,4 + 0°(r756,6)| + 55750+ )
Samplmg

=(ag, ay)

ﬂ'f/ \ﬂf

S

Heads

11/15



RL-QAOA (ancestral sampling)

e Robust autoregressive hybrid policy: (1) = g (7°) 7y (7¢)
e Hybrid policy gradient:

T0) =B |G 0,4 + 0°(r756,6)| + 55750+ )

Sampling

d
‘117‘11) as= ((12 (12)
- -
Base
Layer OOAOF)
T 415

(©oo 00000 ) (©0000000)

(0000009 (©00009)

—

Embeding
Time Steps  j=1
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RL-QAOA (ancestral sampling)

e Robust autoregressive hybrid policy: (1) = g (7°) 7y (7¢)

e Hybrid policy gradient:
T(0) =, [0%(r%50.64) + G°(30,6) | + 5550+ 59

Sampling 4
m=(af,0f)  ar=(a§,a3) as=(a},af)
d c d
T / \71 Trg/ \Trg TS / \7r§
Heads =5 01 — = = =
27 25 | |25
o i s s i I s [
e L,
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RL-QAOA (ancestral sampling)

e Robust autoregressive hybrid policy: (1) = g (7°) 7y (7¢)
e Hybrid policy gradient:

T(0) =, [0%(r%50.64) + G°(30,6) | + 5550+ 59

Sampling 4
alflgauai) az=(a3,a5) | az=(a§,a§)  as=(af,af)
C
™ / \ﬁ Trg1 \Tl'z 7r§ \7r3 d "
Heads -
=
Base
Layer (©o009) (©o0000)
)-/,"/
(©0000000) (©0000000)
Embeding
Time Steps  j=1 ji=2
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RL-QAOA (reward evaluation)
e Robust autoregressive hybrid policy: (1) = 7§ (7°) 7y (7¢)
e Hybrid policy gradient:

G4(r50,61) 4 °r0.¢)| + 851 (5" + )

J(0) =
Sampling
a=(af,af) | laz=(a3,a5) as=(a§,a5)  ai=(af,aj)
5y / \7% 5 / \Trg Trg/ \7r§

C
Heads =5 01
P| [ | €
= = B

-
=
Base
Layer (00000
_;-’/
DO (©0000000) (©0000000)

Embeding
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RL-QAOA (proximal policy gradient)

e Robust autoregressive hybrid policy: (1) = g (7°) 7y (7¢)
e Hybrid policy gradient:

T0) =B |G 0,4 + 0°(r756,6)| + 55750+ )

< reward

PP ’/()
/‘% \
Samp mng

Embeding

Time Steps ~ j=1 =2 j=4
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RL-QAOA numerical results

= QAOA === PG-QAOA === CD-QAOA === RL-QAOA
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| I | | |
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o[T/q] (N=4) 8[T/q] (N=6) oT/q] (N=8)

energy minimization: Ising spin-1/2 model
1st row: classical noise, quantum measurement noise; 2nd row: gate
noise

[y =11+ 1) and [¢s) = [Yas(H))
Agaoa ={Hi, Hs2}; Acpgaoa = {H, H2; Y, XY, Y| Z}.
continuous policies are Sigmoid-Gaussian distributions.
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RL-QAOA for Heisenberg spin-1 model

=== QAOA === PG-QAOA === CD-QAOA === RL-QAOA

1.00 1.00

0.75 0.75
050 0.50
~
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0.00 | [| 0.00 | [| | | ull =l _. -I
0.0 0.05 0.1 0.2 03 0.01 0.02 0.05 0.1 0.2 04
7[Ees] OV =8) S[T/q] (N=8)

e energy minimization: Heisenberg spin-1 model
e classical noise & gate noise

o [Yi)=[ - 1) and [¢.) = [¢pas(H))

o Agaoa = {Hi, Ha};

Acpoaoa ={H,H, Z, X|X; Y, XY, YZ, X|Y- XY, Y|Z—YZ}.

e continuous policies are Beta distributions.
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RL-QAOA for Heisenberg spin-1 model

=== QAOA === PG-QAOA === CD-QAOA === RL-QAOA
,,,,,, 10

.00
0.75 0.75
vu 50 0.50
025 0.25
0.00 B 0.0 WARE B

0.0 005 01 02 0.3 0.01 002 0.05 01 0.
V[es] (V=8 o[T/q) (N )

o Agaoa = {H, Hy};
-ACDQAOA ={H,Hy, Z,X|X; Y, XY, YZ, X| Y- XY, Y| Z-YZ}.

—_— O
1. hybrid continuous-discrete policies
—T7¢ d
e (a].) az, ", a’q) _Hj:1 7T-Od(aﬂsj) ﬂ-g (G’JC | 8> aj) :
2. agnostic to the physical source of noise

3. currently fixed sequence/protocol length, but versatile enough to
accommodate a variable length by adding a “stop” action
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Conclusions and Future work

e Discrete-continuous hybrid optimization designed for reinforcement
learning displays versatility for such tasks and resilience in the presence
of noise.

o Greater performance compared with other gradient-based algorithms
and commonly used blackbox optimization, like PGQAOA and
CDQAOA.

e Generalized QAOA ansatz is more expressive and goes beyond the
framework of QAOA.

e not just selected from a pool of operators, but those are based on
principles of variational counter-diabatic driving
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Conclusions and Future work

e Discrete-continuous hybrid optimization designed for reinforcement
learning displays versatility for such tasks and resilience in the presence
of noise.

o Greater performance compared with other gradient-based algorithms
and commonly used blackbox optimization, like PGQAOA and
CDQAOA.

e Generalized QAOA ansatz is more expressive and goes beyond the
framework of QAOA.

e not just selected from a pool of operators, but those are based on
principles of variational counter-diabatic driving

Method H QAOA ’ PG-QAOA ’ CD-QAOA | RL-QAOA
protocol sequence X X V-free V-free
optimization (discrete)
gate durations V-free V-free V-free V-free
optimization (continuous)
RL optimization X continuous discrete continuous & discrete
noise-robust X v X v
autoregressive X X v v
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Conclusions and Future work

Discrete-continuous hybrid optimization designed for reinforcement
learning displays versatility for such tasks and resilience in the presence
of noise.

Greater performance compared with other gradient-based algorithms
and commonly used blackbox optimization.

Generalized QAOA ansatz is more expressive and goes beyond the
framework of QAOA.

not just selected from a pool of operators, but those are based on
principles of variational counter-diabatic driving

Future directions we're currently working on:

a fair comparison against gradient-based method, i.e. query complexity.
extension to more advanced physics systems or optimization algorithms.
more realistic noise model & implementation on real quantum devices.

much more powerful neural network ansatz like recurrent networks,
self-attention layers, transformer networks
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Thank you for your Attention!
More: CD-QAOA (PRX): 2010.03655 , PG-QAOA (MSML20): 2002.01068
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python package for Eb & maﬁy—body dynamics
QuSpin: http://weinbe58.github.io/QuSpin
ArXiv:2002.01068, 2005.11011, 2010.03655, 2012.06701
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