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Transition path sampling 2

» Characterizing transition paths in condensed matter physics, a
rare event problem
> Two perspectives:

1. Spectral methods (existence of a gap, metastability,...)
2. Transition path theory / potential theory (Cf. Bovier, E., et al.)
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A simple example 3

B
A
dX; = -VV(X;)dt + V2dW, (1)
ergodic w/r/t
p(x) =2Z"te PV 2)

Define the committor function as the conditional probability (X; = x)

q(x) =Px(tp <1a) (3)
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Backward Kolmogorov equation

Let L be the infinitesimal generator for the dynamics
0=Lg=-VV-Vg+Aq q(x)=0,xeA qgx)=1,x€eB

In 1D, we can solve directly for g,

fax BV (X) gy
q(x) = =7
f ePV () dx
Check by inspection:
0. VeBY X4
0xVoyeq = oxvVer rax 33‘1

fb ePV (%) dx
a

(6)

Rotskoff et al. MSML 2021 (@ Stanford University



Explicit results for a simple double well 5
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Insection of High-dim PDE & Rare Events 6

Committor PDE—a quintessentially high dimensional problem

> Canonical example: transitions between two conformations of a
biological molecule

1. transition time is long relative to simulation time

2. importance sampling is key, but not tractable in high-dimensional
systems

3. focus on low-lying eigenvalues not always right perspective
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Main Contributions 7

» Under very general assumptions, we show that importance
sampling asymptotically improves the generalization error.

» We describe an algorithm for active importance sampling that
enables variance reduction for the estimator of the loss function,
even in high-dimensional settings.

> We demonstrate numerically that this algorithm performs well
both on low and high-dimensional examples and that, even when
the total amount of data is fixed, optimizing the variational
objective fails when importance sampling is not used
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Variational formulation = gradient based optimization s

Variational principle:

irqlfC[q] subj.to ¢q(A)=0 ¢g(B)=1 (7)
with
Clal = [ FaPe @ax ®
Rd

Represent g with a neural network, estimate (8), optimize. Several
other approaches based on this idea: Khoo et al, Li et al.
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Necessity of collecting rare data 10

—— Exact solution
—— Minimizer
~—— Empirical minimizer

4 08 -06 -04 -02 0 02 04 06 08
x

log of population loss

-08 -06 -04 -0.2

1(g) = fx’l‘z lg’(x)|2ePY O dx, with V(x) = (1 —x?)% +x/10, 8 = 8, and x7,
X2 at the minima of V(x), two parameters a and b for sigmoid

Rotskoff et al. MSML 2021 @ Stanford University



Reweighting the biased sampling 1

L
Clal ~ + > [Vql2e Y e G gy (11)
L =1
351
301
» Sample with overlap to 21
compute the reweighting %1
factor G (u;) 151
> Standard stuft (use your 101
favorite importance sampling 51
method) 0

-04 -02 0.0 0.2 0.4

exp (—ﬁV(xm,1+1) + 5 (q(xmie) - Mz+1)2)

1 M
_ (12)
M n; exp (—,BV(xm,z) +E5(q(xmi) - Ml)z)
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Miiller-Brown Potential 12

4
VmB(x) = Z A; exp ((x — )" (x - ,Ui)) (13)
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Curie-Weiss d = 144 13

Ising-like model. Fix Dirichlet boundary conditions create
metastability.

Elpl= [ SIVp@P+3(1-p@?dz (19
d:p(2) = DAp(2) + p(2) = p(2)° (15)
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Optimization and identification of the transition states 14

Evolution of the loss (10 realizations of the experiment)

training step
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Optimization and identification of the transition states 15

Sampled transition paths (¢ = —0.5,...,0.5)
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