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Intro: Bayesian inverse problems

Infer an unknown parameter θ ∈ Θ from some noisy observed data

y = G (θ∗) + e

with forward PDE model G : Θ→ Y, Gaussian noise e ∼ N(0, Γ)

Given prior π0, the posterior takes the form

π(θ) ∝ exp

(
−1
2
‖y − G (θ)‖2Γ−1

)
π0(θ)

Sequence of surrogate models (discretizations) G (1),G (2), . . . induce sequence of measures

(π(`))`≥1 −→ π

Classical approach: choose high-fidelity approximation G (L) and sample w.r.t. π(L)
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Intro: Stein variational gradient descent (SVGD)
Find an approximation µ to a target measure π(L) such that

KL
(
µ || π(L)

)
≤ ε

• Evolve a density µt along a gradient flow that minimizes the KL divergence to the target
• KL divergence of density updated with map g given by functional

Jt(g) = KL
(

(I − g)#µt || π(L)
)

• Evolve ensemble of particles θ[1]
t , . . . ,θ

[M]
t ∼ µt

θ̇
[i ]

t = −∇Jt(0)
(
θ

[i ]
t

)
, i = 1, . . . ,M

• Discretize with forward Euler in time and approximate gradient using particles

Classical approach: pick L ∈ N and then integrate with SVGD w.r.t. π(L)

µ0
π(L)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
T

µSL

Integration time (cost) depends on divergence between starting density µ0 and target π(L)

3 / 14



Intro: Literature overview

Multilevel methods for sampling
• MCMC methods that exploit hierarchies of distributions

[Christen and Fox, 2005, Fox and Nicholls, 1997, Dodwell et al., 2015]

• Multilevel variational methods that learn parametric transport maps
[Moselhy and Marzouk, 2012, Parno and Marzouk, 2018, Alsup and Peherstorfer, 2020]

• Multilevel particle filters and multilevel sequential Monte Carlo
[Jasra et al., 2017, Beskos et al., 2017, Hoel et al., 2016, Latz et al., 2018, Wagner et al., 2020]

Stein variational gradient descent[Liu and Wang, 2016, Liu, 2017]

• Analysis of SVGD in the mean-field limit [Liu, 2017, Duncan et al., 2019]

• Convergence rate analysis of SVGD [Korba et al., 2020, Chewi et al., 2020]

• Variants use Newton directions [Detommaso et al., 2018], exploit geometry [Chen et al., 2019], other
acceleration techniques [Liu et al., 2019]
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MLSVGD: Multi-level preconditioning

single-level SVGD:

µ0
π(L)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
T

µSL

proposed MLSVGD:

µ0
π(1)

−−−−−−−→
T1

µ
(1)
T1

π(2)

−−−−−−−→
T2

· · · π(L)

−−−−−−−→
TL

µML

• Integration time depends on divergence of starting density µ0 from π(L)

• Use surrogate models as preconditioners to find better starting densities for following levels

• Need to understand for how long to integrate on each level and what the corresponding cost
complexity is
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MLSVGD: Assumptions for cost analysis

1. Model cost: Cost c` of evaluating model G (`) at level ` bounded as

c` . sγ`, s > 1, γ > 0

2. Discretization error: Error of surrogate model G (`) at level ` bounded as

‖G (`) − G‖L2(π0) . s−α`, α > 0

3. SVGD convergence: Exponential convergence for any starting distribution ν0 and level `

KL
(
νt ||π(`)

)
≤ e−λtKL

(
ν0||π(`)

)
, λ > 0, ∀t ≥ 0

4. Envelope assumption: SVGD densities are bounded by the prior density

µ
(`)
t . π0, ∀t ≥ 0, ` ≥ 0
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MLSVGD: Cost complexity

Cost complexity of single-level SVGD
The integration time T to reach

KL
(
µT || π(L)

)
≤ ε

is

T =
1
λ

log

(
KL(µ0 || π(L))

ε

)
,

and the computational complexity for single-level SVGD scales as

O(ε−γ/α log ε−1) .

Cost complexity of MLSVGD [A., V., P., (2021)]
The integration times T` needed at each level are O(1). The computational complexity for
multi-level SVGD scales as

O(ε−γ/α) .
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MLSVGD: Algorithm

µ0
π(1)

−−−−−−−→
T1

µ
(1)
T1

π(2)

−−−−−−−→
T2

· · · π(L)

−−−−−−−→
TL

µML

• Draw M particles θ[1]
0 , . . . ,θ

[M]
0 from a reference distribution µ0

• For level ` = 1, . . . , L, integrate w.r.t. π(`) by computing the gradient at each step

g [i ]
t =

1
M

(∑M

j=1
∇1K (θ

[j]
t ,θ

[i ]
t ) +

∑M

j=1
K (θ

[j]
t ,θ

[i ]
t )∇ log π(`)(θ

[j]
t )

)
for i = 1, . . . ,M and updating with step-size δt > 0

θ
[i ]
t+δt

= θ
[i ]
t + δtg

[i ]
t , i = 1, . . . ,M

• In practice, cannot monitor the KL divergence, so switch to next level `+ 1 whenever the
norm of the gradient is below predetermined threshold ε
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Numerical results: Nonlinear diffusion reaction

Diffusion-reaction in Ω = [0, 1]2 with nonlinear reaction

f (u,θ) = (0.1 sin(θ1) + 2)e−2.7θ2
1 (e1.8θ2u − 1)

• Infer reaction parameters θ = [θ1, θ2]T

• Finite differences with mesh width 2−5

• Surrogate with mesh widths 2−3, 2−4

• Gaussian prior and 0.5% noise
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Numerical results: SVGD vs. MLSVGD
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• SVGD converges in fewer total iterations but ...

• ... MLSVGD off-loads the bulk of the cost onto the lower levels making it more efficient
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Numerical results: Performance of MLSVGD
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• SVGD on lowest level alone is inaccurate, highest level alone is expensive
• MLSVGD achieves one order of magnitude speedup and is accurate
• For same costs, MLSVGD leads to more accurate inferred solution than SVGD on highest level
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Numerical results: Euler Bernoulli beam

Infer 16 dimensional parameter θ that de-
termines stiffness S(x ;θ) of Euler Bernoulli
beam with displacement u and load f over
domain x ∈ (0, 1) [Parno and Marzouk, 2018]

∂2

∂x2

(
S(x ;θ)

∂2

∂x2 u(x ;θ)

)
= f (x)

• Forward model G solves PDE with finite differences on a mesh of 601 equally-spaced points;
surrogates G (`) use 51, 101, . . . , 501 points

• Prior is log-normal and data y is solution u observed at 41 equally-spaced points and polluted
with 0.01% Gaussian noise
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Numerical results: MLSVGD speedup
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Speedup of MLSVGD over SVGD is consistent across dimension
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Conclusion
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• MLSVGD exploits a hierarchy of distributions to achieve speedup over single-level SVGD for
Bayesian inference

• Analysis conducted in mean-field limit shows a cost complexity reduction of MLSVGD
compared to single-level SVGD

• Numerical experiments conducted in discrete-time and finite-particle regime demonstrate up to
one order of magnitude speedup
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