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Intro: Bayesian inverse problems

Infer an unknown parameter 8 € © from some noisy observed data
y=G(0")+e

with forward PDE model G : © — Y, Gaussian noise e ~ N(0,T)

Given prior g, the posterior takes the form

(0) x exp (= Ly = G(O)IF-» ) mo(6)

Sequence of surrogate models (discretizations) G, G(?), ... induce sequence of measures
(W(O)gzl — T

Classical approach: choose high-fidelity approximation G(!) and sample w.r.t. (%)
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Intro: Stein variational gradient descent (SVGD)

Find an approximation y to a target measure 7(5) such that

KL (u I 71'(L)> <e

e Evolve a density p; along a gradient flow that minimizes the KL divergence to the target

e KL divergence of density updated with map g given by functional
Je(g) =KL ((/ - g)gpe || 7H))
e Evolve ensemble of particles 0&1], cey BEM] ~ Lt
0" — _v,(0) (o), i=1...m
e Discretize with forward Euler in time and approximate gradient using particles

Classical approach: pick L € N and then integrate with SVGD w.r.t. 7(}

(L)
™ SL
1o - It

Integration time (cost) depends on divergence between starting density sy and target 7(5)
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Intro: Literature overview

Multilevel methods for sampling
e MCMC methods that exploit hierarchies of distributions

[Christen and Fox, 2005, Fox and Nicholls, 1997, Dodwell et al., 2015]

e Multilevel variational methods that learn parametric transport maps

[Moselhy and Marzouk, 2012, Parno and Marzouk, 2018, Alsup and Peherstorfer, 2020]

e Multilevel particle filters and multilevel sequential Monte Carlo

[Jasra et al., 2017, Beskos et al., 2017, Hoel et al., 2016, Latz et al., 2018, Wagner et al., 2020]

Stein variational gradient descentiLiu and Wang, 2016, Liu, 2017]
e Analysis of SVGD in the mean-field limit [Liu, 2017, Duncan et al., 2019]

e Convergence rate analysis of SVGD [korba et al., 2020, Chewi et al., 2020]

e Variants use Newton directions [petommaso <t al., 2018, €Xploit geOMELry [chen et al., 2010], Other

acceleration techniques [Liu et al., 2019
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MLSVGD: Multi-level preconditioning

single-level SVGD:

)

SL
Ho - 7
proposed MLSVGD:
JeY 1) e =0 ML
o ———— Hn, T T M

e Integration time depends on divergence of starting density o from (D)
e Use surrogate models as preconditioners to find better starting densities for following levels
e Need to understand for how long to integrate on each level and what the corresponding cost

complexity is
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MLSVGD: Assumptions for cost analysis

1. Model cost: Cost ¢; of evaluating model G at level ¢ bounded as

czgsw, s>1 v>0

2. Discretization error: Error of surrogate model G(©) at level ¢ bounded as

1GY) — Glliz(me) S5 >0

3. SVGD convergence: Exponential convergence for any starting distribution v and level ¢

KL (ut||w<f>) < e MKL (1/0||7r(£)) . A>0,Vt>0

4. Envelope assumption: SVGD densities are bounded by the prior density

W < mo, WE>0,£>0
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MLSVGD: Cost complexity

Cost complexity of single-level SVGD
The integration time T to reach

KL (/iT [l 77(")) <e

(L)
T_ llog (KL(MO || ™ )) ’
A €

and the computational complexity for single-level SVGD scales as
O/ loge™?).

Cost complexity of MLSVGD [A., V., P, (2021)]

The integration times Ty needed at each level are O(1). The computational complexity for
multi-level SVGD scales as

O(e ).
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MLSVGD: Algorithm

1) 2 A ML
Mo 4> by, o T M
Ty T2 n
1] [M] .
e Draw M particles 85",...,685 " from a reference distribution p
e Forlevel £ =1,..., L, integrate w.r.t. 7(*) by computing the gradient at each step

(Z V1K (69, 617 +Z K(6Y), 61V log >(0“)>
for i =1,..., M and updating with step-size §; > 0
o, =6l +s =1,...,M
46, — tg I=1,...,

e In practice, cannot monitor the KL divergence, so switch to next level £ + 1 whenever the
norm of the gradient is below predetermined threshold ¢
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Numerical results: Nonlinear diffusion reaction

Diffusion-reaction in Q = [0, 1]? with nonlinear reaction

10
. _ 2
f(u,8) = (0.1sin(fy) + 2)e 2701 (e18%u _ 1) g | |
<
5 0 [ 1
e Infer reaction parameters 6 = [y, 6>] " ‘g
g 4 | ]
e Finite differences with mesh width 27° . ) \ ’i
e Surrogate with mesh widths 273 24

-3 -2 -1 0 1 2 3

Gaussian prior and 0.5% noise
parameter 6,
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Numerical results: SVGD vs. MLSVGD

= of | SVGD (highest level) ] = Y D SVGD (highest level)
£ 10 — — MLSVGD (2 levels) S 10 — — MLSVGD (2 levels)
E 10-1 ——— MLSVGD (3 levels) c 10-1 = MLSVGD (3 levels)
=S c
% 10 ., % 102 ¢
S .3
o 10 \ S, . o 10

104 L2 s 10"

0 2 4 6 8 0 500 1000
runtime [s] % 10° number iterations

e SVGD converges in fewer total iterations but ...

e ... MLSVGD off-loads the bulk of the cost onto the lower levels making it more efficient
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Numerical results: Performance of MLSVGD

-------- SVGD (highest level) 1 1
—— SVGD (lowest level) o 10’ o 10’
— — MLSVGD (2 levels) : :
= MLSVGD (3 |EVE|S) '§ 100 '§ 100
-1 : i<l S
% 10 ., S 05 1071 o 05 107"
5} - Q o]
c ° o
‘5 1072 £ 102 8 107
o ' | © ©
5 6 5
= % 10 108
@) -3 K
10 0 0
102 10® 10% 10° 0 0.5 1 0 0.5 1
runtime [s] spatial coordinate X, spatial coordinate x 1
MLSVGD SVGD

e SVGD on lowest level alone is inaccurate, highest level alone is expensive
e MLSVGD achieves one order of magnitude speedup and is accurate
e For same costs, MLSVGD leads to more accurate inferred solution than SVGD on highest level
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Numerical results: Euler Bernoulli beam

parameter 63

Infer 16 dimensional parameter 6 that de-
termines stiffness S(x; @) of Euler Bernoulli
beam with displacement u and load f over
domain x € (07 1) [Parno and Marzouk, 2018]

parameter Oy

paramcter 6

2

i (5(x; B)%u(x; 0)) = f(x)

ox?

e Forward model G solves PDE with finite differences on a mesh of 601 equally-spaced points;
surrogates G(©) use 51,101,...,501 points

e Prior is log-normal and data y is solution v observed at 41 equally-spaced points and polluted
with 0.01% Gaussian noise
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Numerical results: MLSVGD speedup

12
10 ¢

speedup
N A OO ©

3 6 9 12 16
dimension d

Speedup of MLSVGD over SVGD is consistent across dimension
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Conclusion

-------- SVGD (highest level)
— MLSVGD (3 levels)
= = MLSVGD (6 levels)

gradient norm

runtime [s]  x10°

e MLSVGD exploits a hierarchy of distributions to achieve speedup over single-level SVGD for

Bayesian inference

e Analysis conducted in mean-field limit shows a cost complexity reduction of MLSVGD

compared to single-level SVGD

e Numerical experiments conducted in discrete-time and finite-particle regime demonstrate up to

one order of magnitude speedup

12
10

speedup

N A O

3 6 9 12 16
dimension d
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