Multilevel Stein variational gradient descent with applications to Bayesian inverse problems

Terrence Alsup, Luca Venturi, and Benjamin Peherstorfer Courant Institute of Mathematical Sciences, New York University

August 2021

Intro: Bayesian inverse problems

Infer an unknown parameter $oldsymbol{ heta}\in\Theta$ from some noisy observed data

$$oldsymbol{y} = G(oldsymbol{ heta}^*) + oldsymbol{e}$$

with forward PDE model $G: \Theta \rightarrow \mathcal{Y}$, Gaussian noise $\boldsymbol{e} \sim N(0, \Gamma)$

Given prior π_0 , the posterior takes the form

$$\pi(oldsymbol{ heta}) \propto \exp\left(-rac{1}{2} \left\|oldsymbol{y} - oldsymbol{G}(oldsymbol{ heta})
ight\|_{\Gamma^{-1}}^2
ight) \pi_0(oldsymbol{ heta})$$

Sequence of surrogate models (discretizations) $G^{(1)}, G^{(2)}, \ldots$ induce sequence of measures

$$(\pi^{(\ell)})_{\ell \geq 1} \longrightarrow \pi$$

Classical approach: choose high-fidelity approximation $G^{(L)}$ and sample w.r.t. $\pi^{(L)}$

Intro: Stein variational gradient descent (SVGD)

Find an approximation μ to a target measure $\pi^{(L)}$ such that

$$\mathrm{KL}\left(\mu \mid\mid \pi^{(L)}\right) \leq \epsilon$$

- Evolve a density μ_t along a gradient flow that minimizes the KL divergence to the target
- KL divergence of density updated with map \boldsymbol{g} given by functional

$$J_t(\boldsymbol{g}) = \mathrm{KL}\left((I - \boldsymbol{g})_{\#} \mu_t \mid\mid \pi^{(L)}\right)$$

• Evolve ensemble of particles $oldsymbol{ heta}_t^{[1]},\ldots,oldsymbol{ heta}_t^{[M]}\sim \mu_t$

$$\dot{\boldsymbol{ heta}}_t^{[i]} = -
abla J_t(\mathbf{0}) \left(\boldsymbol{ heta}_t^{[i]}
ight), \qquad i = 1, \dots, M$$

• Discretize with forward Euler in time and approximate gradient using particles

Classical approach: pick $L \in \mathbb{N}$ and then integrate with SVGD w.r.t. $\pi^{(L)}$

$$\mu_0 \xrightarrow{\pi^{(L)}} \mu^{\mathsf{SL}}$$

Integration time (cost) depends on divergence between starting density μ_0 and target $\pi^{(L)}$

Intro: Literature overview

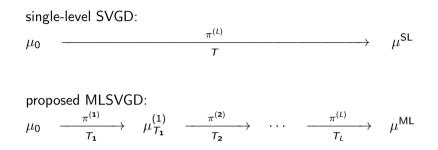
Multilevel methods for sampling

- MCMC methods that exploit hierarchies of distributions [Christen and Fox, 2005, Fox and Nicholls, 1997, Dodwell et al., 2015]
- Multilevel variational methods that learn parametric transport maps [Moselhy and Marzouk, 2012, Parno and Marzouk, 2018, Alsup and Peherstorfer, 2020]
- Multilevel particle filters and multilevel sequential Monte Carlo [Jasra et al., 2017, Beskos et al., 2017, Hoel et al., 2016, Latz et al., 2018, Wagner et al., 2020]

Stein variational gradient descent[Liu and Wang, 2016, Liu, 2017]

- Analysis of SVGD in the mean-field limit [Liu, 2017, Duncan et al., 2019]
- Convergence rate analysis of SVGD [Korba et al., 2020, Chewi et al., 2020]
- Variants use Newton directions [Detommaso et al., 2018], exploit geometry [Chen et al., 2019], other acceleration techniques [Liu et al., 2019]

MLSVGD: Multi-level preconditioning



- Integration time depends on divergence of starting density μ_0 from $\pi^{(L)}$
- Use surrogate models as preconditioners to find better starting densities for following levels
- Need to understand for how long to integrate on each level and what the corresponding cost complexity is

MLSVGD: Assumptions for cost analysis

1. Model cost: Cost c_{ℓ} of evaluating model $G^{(\ell)}$ at level ℓ bounded as

 $c_\ell \lesssim s^{\gamma\ell}, \quad s>1, \,\, \gamma>0$

2. Discretization error: Error of surrogate model $G^{(\ell)}$ at level ℓ bounded as

$$\|G^{(\ell)}-G\|_{L^2(\pi_0)}\lesssim s^{-lpha\ell},\quad lpha>0$$

3. SVGD convergence: Exponential convergence for any starting distribution ν_0 and level ℓ

$$\mathrm{KL}\left(\nu_t || \pi^{(\ell)}\right) \leq e^{-\lambda t} \mathrm{KL}\left(\nu_0 || \pi^{(\ell)}\right), \quad \lambda > 0, \; \forall t \geq 0$$

4. Envelope assumption: SVGD densities are bounded by the prior density

$$\mu_t^{(\ell)} \lesssim \pi_0, \quad \forall t \ge 0, \ \ell \ge 0$$

MLSVGD: Cost complexity

Cost complexity of single-level SVGD

The integration time T to reach

$$\mathrm{KL}\left(\mu_{\mathcal{T}} \mid\mid \pi^{(\mathcal{L})}\right) \leq \epsilon$$

is

$$\mathcal{T} = rac{1}{\lambda} \log \left(rac{\operatorname{KL}(\mu_0 \mid\mid \pi^{(L)})}{\epsilon}
ight) \,,$$

and the computational complexity for single-level SVGD scales as

$$\mathcal{O}(\epsilon^{-\gamma/lpha}\log\epsilon^{-1})$$
 .

Cost complexity of MLSVGD [A., V., P., (2021)] The integration times T_{ℓ} needed at each level are $\mathcal{O}(1)$. The computational complexity for multi-level SVGD scales as

MLSVGD: Algorithm

$$\mu_0 \quad \xrightarrow{\pi^{(1)}} \quad \mu_{\mathcal{T}_1}^{(1)} \quad \xrightarrow{\pi^{(2)}} \quad \cdots \quad \xrightarrow{\pi^{(L)}} \quad \mu^{\mathsf{ML}}$$

• Draw *M* particles $\theta_0^{[1]}, \ldots, \theta_0^{[M]}$ from a reference distribution μ_0

• For level $\ell=1,\ldots,L$, integrate w.r.t. $\pi^{(\ell)}$ by computing the gradient at each step

$$\boldsymbol{g}_t^{[i]} = \frac{1}{M} \left(\sum\nolimits_{j=1}^M \nabla_1 \mathcal{K}(\boldsymbol{\theta}_t^{[j]}, \boldsymbol{\theta}_t^{[i]}) + \sum\nolimits_{j=1}^M \mathcal{K}(\boldsymbol{\theta}_t^{[j]}, \boldsymbol{\theta}_t^{[i]}) \nabla \log \pi^{(\ell)}(\boldsymbol{\theta}_t^{[j]}) \right)$$

for $i=1,\ldots,M$ and updating with step-size $\delta_t>0$

$$\boldsymbol{\theta}_{t+\delta_t}^{[i]} = \boldsymbol{\theta}_t^{[i]} + \delta_t \boldsymbol{g}_t^{[i]}, \qquad i = 1, \dots, M$$

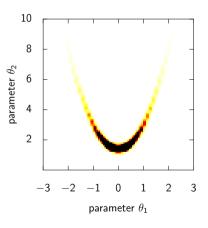
• In practice, cannot monitor the KL divergence, so switch to next level $\ell+1$ whenever the norm of the gradient is below predetermined threshold ϵ

Numerical results: Nonlinear diffusion reaction

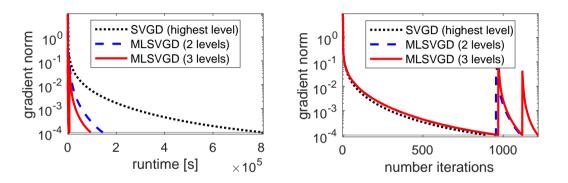
Diffusion-reaction in $\Omega = [0,1]^2$ with nonlinear reaction

$$f(u, \theta) = (0.1 \sin(\theta_1) + 2) e^{-2.7 \theta_1^2} (e^{1.8 \theta_2 u} - 1)$$

- Infer reaction parameters $\boldsymbol{\theta} = [\theta_1, \theta_2]^T$
- Finite differences with mesh width 2^{-5}
- Surrogate with mesh widths 2⁻³, 2⁻⁴
- Gaussian prior and 0.5% noise

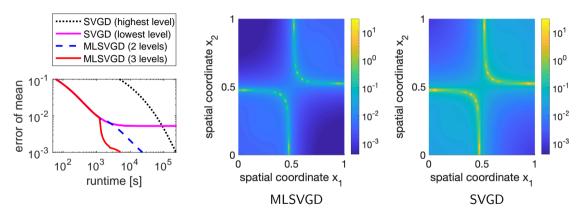


Numerical results: SVGD vs. MLSVGD



- SVGD converges in fewer total iterations but ...
- ... MLSVGD off-loads the bulk of the cost onto the lower levels making it more efficient

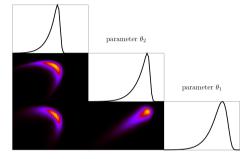
Numerical results: Performance of MLSVGD



- SVGD on lowest level alone is inaccurate, highest level alone is expensive
- MLSVGD achieves one order of magnitude speedup and is accurate
- For same costs, MLSVGD leads to more accurate inferred solution than SVGD on highest level

Numerical results: Euler Bernoulli beam

parameter θ_3

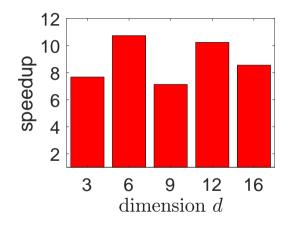


Infer 16 dimensional parameter θ that determines stiffness $S(x; \theta)$ of Euler Bernoulli beam with displacement u and load f over domain $x \in (0, 1)$ [Parno and Marzouk, 2018]

$$\frac{\partial^2}{\partial x^2} \left(S(x; \theta) \frac{\partial^2}{\partial x^2} u(x; \theta) \right) = f(x)$$

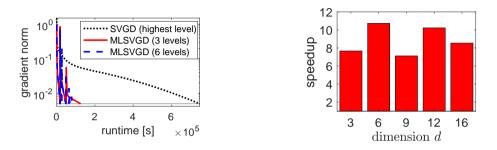
- Forward model G solves PDE with finite differences on a mesh of 601 equally-spaced points; surrogates G^(l) use 51, 101,..., 501 points
- Prior is log-normal and data **y** is solution *u* observed at 41 equally-spaced points and polluted with 0.01% Gaussian noise

Numerical results: MLSVGD speedup



Speedup of MLSVGD over SVGD is consistent across dimension

Conclusion



- MLSVGD exploits a hierarchy of distributions to achieve speedup over single-level SVGD for Bayesian inference
- Analysis conducted in mean-field limit shows a cost complexity reduction of MLSVGD compared to single-level SVGD
- Numerical experiments conducted in discrete-time and finite-particle regime demonstrate up to one order of magnitude speedup