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Lattice models provide a
useful simplification of
e.g. strongly correlated
many-body systems

Ground state

s — po(s)
Hpy = Eypg

Even for a spin-'2 lattice model, the
ground state of N particles is an
eigenfunction with 2N possible inputs!



Neural quantum states

Existing deep learning approaches:

- use a convolutional neural network for representation
- optimize the variational energy with Monte Carlo (VMC)
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In three steps, we show a novel optimization method for neural quantum states:

1. Stochastic dynamics of (9
2. Reinforcement learning reformulation
3. Application to neural quantum states
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Stoquastic Hamiltonians [{ can be
decomposed into a kinetic and potential
energy. The kinetic part F describes
stochastic changes of the configuration.
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Stochastic dynamics of (0)()

Dynamics in imaginary time (converges to ground state as ¢ — 0Q)
Orp(t) = —Hp(t)

for a stoquastic Hamiltonian

HSS’ — _FSS/ + V(S)5SS/

we have the Feynman-Kac representation
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Reinforcement learning formulation

Todorov: maximum entropy RL can be linearized

Reverse transformation:

Feynman-Kac (ground state) SD(S(), O) — E]p {6_ f V(St)dtgp(ST, T)}

log @o(s’)

Us)=1
Soft Bellman (RL) () = log po(s)




Application: neural guantum states

Method:

1. Represent action-value (s, a) with CNN

2. Optimize: solve soft Bellman with soft Q-learning (Haarnoja et al)
3. Result: ground state approximation log ¢(s) = Softmax(Q(s,a))
4.

Follow policy to sample (¥
Q(s’, a’)

Q(s, a) s
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Application: neural guantum states

Method: Pros/cons:

1. Represent (s, a) with CNN 1. Larger CNN

2. Optimize with soft Q-learning (Haarnoja etal) 2. Faster update steps

3. Result: log ¢(s) = Softmax(Q(s, a)) 3. -

4. Follow policy to sample QO 4. Higher acceptance rate

Q(s’, a’)
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Experiments

Proof of principle

- test case: 6x6 Ising model

- 0.1% error in ground state energy

- only 20 min training time (12 GB GPU)

- O(\/N) faster sampling of ground state

Code: github.com/WillemGispen/Lattice-Quarl



http://github.com/WillemGispen/Lattice-Quarl

More in the papers!

Three different RL formulations:

- Continuous time (this talk)
- Discrete and infinite time horizon
- Discrete time and terminal states

Last year:

- Continuous state spaces
- Atomic and molecular systems
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e Quantum mechanics -— reinforcement learning
e New optimization methods for neural quantum states
e Faster optimization steps and sampling
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