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The impact of data structure on learning

The data sets we care about in machine learning contain a lot of structure.

Written text (NLP) Images Games of Go

How does data structure impact learning in neural networks?



Gardner & Derrida (1989)

The teaCher'StUdent Setup Seung, Sompolinsky, Tishby (1993)
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The Gaussian Equivalence Property

Goal: compute the prediction mean-squared error at all times.

Saad & Solla, (1995)

For the vanilla-teacher student with i.i.d. inputs x: Biehl & Schwarze (1995)
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The Gaussian Equivalence Property

Goal: compute the prediction mean-squared error at all times.

Saad & Solla, (1995)

For the vanilla-teacher student with i.i.d. inputs x: Biehl & Schwarze (1995)
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The Property

Goal: compute the prediction mean-squared error at all times.

Saad & Solla, (1995)

For the vanilla-teacher student with i.i.d. inputs x: Bichl & Schwarze (1995)
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The Gaussian Equivalence Property

Goal: compute the prediction mean-squared error at all times.

For the vanilla-teacher student with i.i.d. inputs x: Biﬁﬁfg gcf,f,)\:fr’zg ?199535)

pmse (9,5) = E (i v¥yg (Ak) - f: v™g (Vm)>

Gaussian Equivalence Property:

Exix; = 0;; . .
i Z M, (A, V) are jointly Gaussian

Hence, the pmse is a function of only
the second moments of (4, 1):
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The hidden manifold model
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Our

Gaussian Equivalence Theorem

We give rigorous conditions under which we can
analyse learning from data coming from single-layer generators.

Dynamical equations for two-layer students

The equations track the test error of two-layer
students trained on deep generative models.

Replica analysis for random feature regression

Closed set of fixed point equations that characterise
the performance after full-batch training.




The Gaussian Equivalence Theorem

Setup: Fully connected, single layer generator G : R” — R¥

= Gn(c) = o(ay )

with the teacher acting on the latent variable c: y = ¢;(c)

They’re still
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Theorem: Let P be the distribution of the pair (A, v)
and let P be the Gaussian distribution with the
same first and second moments. Then...

ius(P.P) = 0 (| ewart? |+ | ewan?| + 25 |



The

. D N
Let P be the distribution of the pair (A, v) G:R” =R
and let P be the Gaussian distribution with the Ty = Gn(c) = o(a ¢)
same first and second moments. Then... y = d5(c
Generator weights
Student weights a\ Teacher weights ——\
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Related to input correlations

e Works in wide network limit rely on RMT and thus random weights

e Mei & Montanari; Couillet et al. introduce related equivalent Gaussian
models for integrals w.r.t. spectral densities.

e Large body of work on low-dim projections of high-dim data being
Gaussian - we quantify how Gaussian they look like.



for two-layer students

Fully connected, single layer generator G : R” — RY
Ty, = Gn(c) = J(CLZC)

with the teacher acting on the latent variable c: y = ¢;(c)

e Train the student using online SGD:

(9M-|-1 — 6),& R UVQ»C(HHQM,J;M,y;
Derive a closed set of equations for the order parameters
Q =ENX, R =EX™

that track the dynamics of a two-layer student
trained using online SGD on the deep hidden manifold.



for two-layer students

Train the student using online SGD: Op+1 =0, —nVoL(O)|o, ..y

Derive a closed set of equations for the order parameters Saad & Solla (1995)

Biehl & Riegler (1995)
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Dynamical equations for two-layer students

Statement: QFF = E NN, RFT =EN\f™

Q= / dua(p) p ¢*(p) RF™ = — / dua(p) ™ (p)

Remarkably, the generator only appears via two covariance matrices:

Qij =V L j (I)’L'r = Ik I;C,

Input-input Input-latent
correlations correlations
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Testing the equations with deep generators

Used pre-trained dcGAN (Radford ’15) and normalising flows (Dinh ’17) to
generate inputs

x:g(c):gL-.-g%nggl(C)

CONV 4
G(2)

Deep Convolutional GAN (Radford et al., ICLR 2016)
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The batch case: random-features logistic regression

e Replica calculation provides generalisation error of
full-batch logistic regression with random features.

- RF, 6 ratio=1
e RF, ratio=2
- RF, ratio=4

0 1 2 3 4 5
sample complexity

Top half: Graysacle CIFAR10 images

Bottom half: Samples from dcGAN Fixed weight decay A = 1072
(Radford et al. ’15)
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Concluding perspectives
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* Proof of convergence for empirical risk
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B. Loureiro, C. Gerbelot, H. Cui
SG, M. Mézard, F. Krzakala, L. Zdeborova,
arXiv:2102.08127

e Complementary proof of risk convergence: Hu & Lu

(arXiv:2009.07669)

Theorem 1. (Training loss and generalisation error) Under Assumption (C.1), there exist constants C.c, ¢’ > 0
such that, for any optimal selution w to (1.3), the training loss and generalisation error respectively defined by

equations (2.2) and (2.3) verify, forany 0 < € < ¢':

A " ()
P('&main(“’) — Evain | = (:_) < ? .

P ([Egenti) — Bung [000), FED]| 2 €) € T,

(2.10)
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e Proof of convergence for empirical risk

e Complementary proof of risk convergence: Hu & Lu
(arXiv:2009.07669)

e Pre-trained teacher with static feature map
for more realistic learning curves.

Establish the limits of Gaussian equivalence,
go beyond Gaussian models of data!
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