Jeff M. Phillips and Hasan Pourmahmood-Aghababa

School of Computing, University of Utah

August 2021

Consider two trajectories with *m* waypoints.

How can we measure their distance?

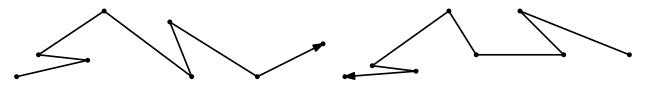
Consider two trajectories with *m* waypoints.

How can we measure their distance?

Popular Distances

Hausdorff distance

Consider two trajectories with *m* waypoints.

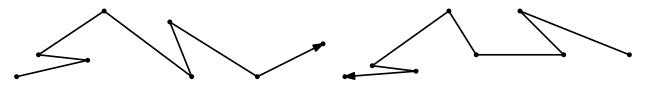


How can we measure their distance?

Popular Distances

Hausdorff distance
 Does not preserve orientation; Complexity ~ O(m).

Consider two trajectories with *m* waypoints.

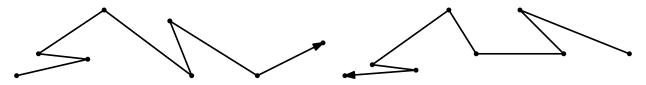


How can we measure their distance?

Popular Distances

- Hausdorff distance
 Does not preserve orientation; Complexity ~ O(m).
- Dynamic Time Warping distance
- Fréchet distance
- Discrete Fréchet distance

Consider two trajectories with *m* waypoints.



How can we measure their distance?

Popular Distances

- Hausdorff distance
 Does not preserve orientation; Complexity ~ O(m).
- Dynamic Time Warping distance
- Fréchet distance
- Discrete Fréchet distance
 All above 3 preserve orientation; Complexity ~ O(m²).

KNN and almost all clustering algorithms with these distances are expensive.

- KNN and almost all clustering algorithms with these distances are expensive.
- More importantly, these metrics do not allow us to take the advantage of other ML algorithms as most of them need a vector/tensor/... as an input.

- KNN and almost all clustering algorithms with these distances are expensive.
- More importantly, these metrics do not allow us to take the advantage of other ML algorithms as most of them need a vector/tensor/... as an input.

Properties of a distance we are interested in:

- KNN and almost all clustering algorithms with these distances are expensive.
- More importantly, these metrics do not allow us to take the advantage of other ML algorithms as most of them need a vector/tensor/... as an input.

Properties of a distance we are interested in:

- ▶ It does not depend on *m*.
- It is as fast as calculating dot products in Euclidean spaces.
- It provides an embedding for curves in a Euclidean space in order to enable the use of ML algorithms.

-MinDist Function

▶ MinDist Vectorization [Phillips-Tang 2019] Let γ be a curve and $q \in \mathbb{R}^2$. Then

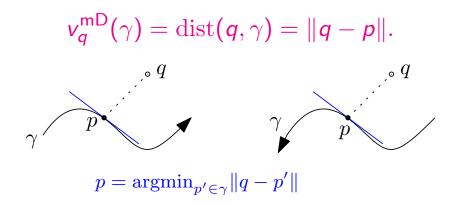
-MinDist Function

▶ MinDist Vectorization [Phillips-Tang 2019] Let γ be a curve and $q \in \mathbb{R}^2$. Then

$$v_q^{\mathsf{mD}}(\gamma) = \operatorname{dist}(q, \gamma) = ||q - p||.$$

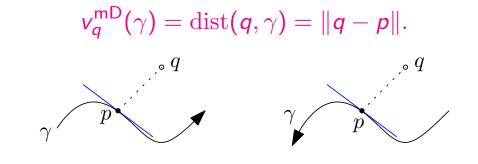
-MinDist Function

▶ MinDist Vectorization [Phillips-Tang 2019] Let γ be a curve and $q \in \mathbb{R}^2$. Then



-MinDist Function

▶ MinDist Vectorization [Phillips-Tang 2019] Let γ be a curve and $q \in \mathbb{R}^2$. Then



 $p = \operatorname{argmin}_{p' \in \gamma} \|q - p'\|$

For $Q = \{q_1, \ldots, q_n\} \subset \mathbb{R}^2$, we get $v_Q^{mD} : \{\text{curves}\} \to \mathbb{R}^n$ by $v_Q^{mD}(\gamma) = (v_{q_1}^{mD}(\gamma), \cdots, v_{q_n}^{mD}(\gamma)).$

- Definitions

MinDist Function

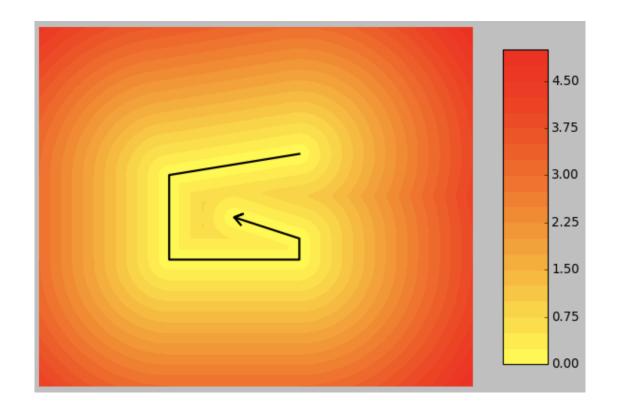


Figure: An example of MinDist function v_q^{mD} for a curve.

└─MinDist Function

MinDist Distance Let γ, γ' be two curves and $Q = \{q_1, \dots, q_n\} \subset \mathbb{R}^2$. Then $d_Q^{mD}(\gamma, \gamma') = \frac{1}{\sqrt{n}} \|v_Q^{mD}(\gamma) - v_Q^{mD}(\gamma')\|.$

-MinDist Function

MinDist Distance Let γ, γ' be two curves and $Q = \{q_1, \dots, q_n\} \subset \mathbb{R}^2$. Then $d_Q^{mD}(\gamma, \gamma') = \frac{1}{\sqrt{n}} \|v_Q^{mD}(\gamma) - v_Q^{mD}(\gamma')\|.$

Complexity: O(|Q|)

-MinDist Function

MinDist Distance Let γ, γ' be two curves and $Q = \{q_1, \dots, q_n\} \subset \mathbb{R}^2$. Then $d_Q^{mD}(\gamma, \gamma') = \frac{1}{\sqrt{n}} \|v_Q^{mD}(\gamma) - v_Q^{mD}(\gamma')\|.$

Complexity: O(|Q|)

Question

How can we encode orientation preserving property into d_Q^{mD} ?

SignedDist Function

Definitions and Notation

► Simple Curve

A non-self-crossing (possibly closed) curve.

-SignedDist Function

Definitions and Notation

Simple Curve

A non-self-crossing (possibly closed) curve.

The class of all a.e. differentiable curves γ in \mathbb{R}^2 that have countably many number of self-crossings.

-SignedDist Function

Definitions and Notation

Simple Curve

A non-self-crossing (possibly closed) curve.

► Γ The class of all a.e. differentiable curves γ in \mathbb{R}^2 that have countably many number of self-crossings.

► Γ'

The subset of Γ containing all simple curves.

-SignedDist Function

Definitions and Notation

Simple Curve

A non-self-crossing (possibly closed) curve.

► Γ The class of all a.e. differentiable curves γ in \mathbb{R}^2 that have countably many number of self-crossings.

▶ Γ′

The subset of Γ containing all simple curves.

$\blacktriangleright n_p$

Considering the direction of curve, n_p is the unique normal at p.

-SignedDist Function

► SignedDist Function

Let $\gamma \in \Gamma$, $q \in \mathbb{R}^2$ and $\sigma > 0$ and set $p = \operatorname{argmin}_{p' \in \gamma} \|q - p'\|$.

- Definitions

-SignedDist Function

SignedDist Function

Let $\gamma \in \Gamma$, $q \in \mathbb{R}^2$ and $\sigma > 0$ and set $p = \operatorname{argmin}_{p' \in \gamma} ||q - p'||$. If p is not an endpoint of γ , we define

$$v_q^{\sigma}(\gamma) = \frac{1}{\sigma} \langle n_p(q), q-p \rangle e^{-\frac{\|q-p\|^2}{\sigma^2}}.$$

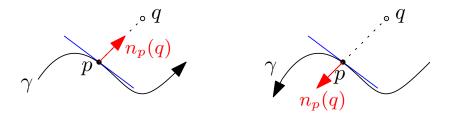
- Definitions

-SignedDist Function

SignedDist Function

Let $\gamma \in \Gamma$, $q \in \mathbb{R}^2$ and $\sigma > 0$ and set $p = \operatorname{argmin}_{p' \in \gamma} ||q - p'||$. If p is not an endpoint of γ , we define

$$\mathsf{v}^{\sigma}_{q}(\gamma) = rac{1}{\sigma} \langle \mathsf{n}_{\mathsf{p}}(q), q-\mathsf{p}
angle e^{-rac{\|q-\mathsf{p}\|^{2}}{\sigma^{2}}}.$$



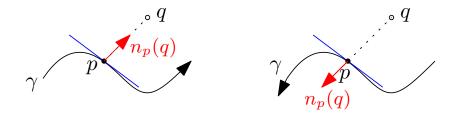
- Definitions

-SignedDist Function

SignedDist Function

Let $\gamma \in \Gamma$, $q \in \mathbb{R}^2$ and $\sigma > 0$ and set $p = \operatorname{argmin}_{p' \in \gamma} ||q - p'||$. If p is not an endpoint of γ , we define

$$\mathsf{v}_{q}^{\sigma}(\gamma) = rac{1}{\sigma} \langle \mathsf{n}_{\mathsf{p}}(q), q-\mathsf{p}
angle e^{-rac{\|q-\mathsf{p}\|^{2}}{\sigma^{2}}}.$$



For endpoints we set

$$\mathsf{v}^{\sigma}_{\boldsymbol{q}}(\gamma) = rac{1}{\sigma} \langle \mathsf{n}_{\boldsymbol{p}}, \boldsymbol{q} - \boldsymbol{p}
angle rac{\| \boldsymbol{q} \|_{\infty, \boldsymbol{p}}}{\| \boldsymbol{q} - \boldsymbol{p} \|} \, e^{-rac{\| \boldsymbol{q} - \boldsymbol{p} \|^2}{\sigma^2}} \, .$$

where $||q||_{\infty,p}$ is the l^{∞} -norm of q in the coordinate system with axis parallel to n_p and L (tangent line at p) and origin at p.

-SignedDist Function

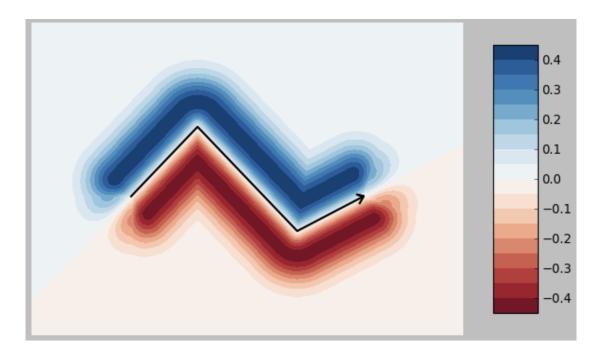


Figure: An example of v_q^{σ} function for a curve with sidedness encoded by positive/negative values.

- Definitions

-SignedDist Function

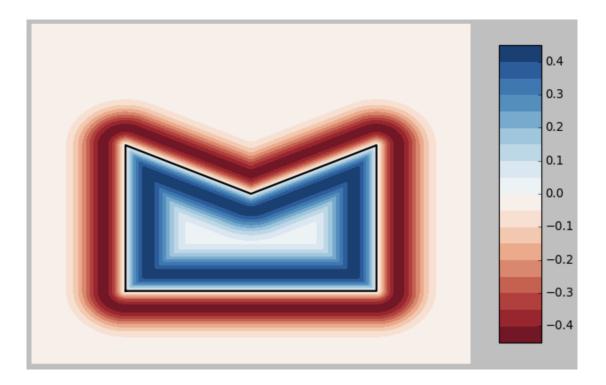


Figure: An example of v_q^{σ} function for a closed curve encoded by positive/negative values.

SignedDist Function

SignedDist Function

SignedDist Vectorization

►
$$Q = \{q_1, \ldots, q_n\} \subset \mathbb{R}^2$$
,
► $\sigma > 0$,

▶ Define
$$v_Q^\sigma : \Gamma \to \mathbb{R}^n$$
 by

$$v_Q^{\sigma}(\gamma) = (v_{q_1}^{\sigma}(\gamma), \cdots, v_{q_n}^{\sigma}(\gamma)).$$

-SignedDist Function

SignedDist Vectorization
Q = {q₁,...,q_n} ⊂ ℝ²,
σ > 0,
Define v^σ_Q : Γ → ℝⁿ by
v^σ_Q(γ) = (v^σ_{q1}(γ),...,v^σ_{qn}(γ)).

This embedding enables using ML algorithms, which is the biggest advantage of our work.

 \square SignedDist Function

Orientation Preserving Distance

 \square SignedDist Function

Orientation Preserving Distance

$$\begin{array}{l} \blacktriangleright \ \gamma, \gamma' \in \Gamma, \\ \blacktriangleright \ Q = \{q_1, \dots, q_n\} \subset \mathbb{R}^2, \\ \blacktriangleright \ \sigma > 0, \end{array}$$

 \square SignedDist Function

Orientation Preserving Distance

$$\begin{array}{l} \triangleright \ \gamma, \gamma' \in \Gamma, \\ \triangleright \ Q = \{q_1, \dots, q_n\} \subset \mathbb{R}^2, \\ \triangleright \ \sigma > 0, \\ d_Q^{\sigma}(\gamma, \gamma') = \frac{1}{\sqrt{n}} \| v_Q^{\sigma}(\gamma) - v_Q^{\sigma}(\gamma') \|. \end{array}$$

SignedDist Function

Orientation Preserving Distance

$$\begin{array}{l} \flat \ \gamma, \gamma' \in \Gamma, \\ \flat \ Q = \{q_1, \dots, q_n\} \subset \mathbb{R}^2, \\ \flat \ \sigma > 0, \\ d_Q^{\sigma}(\gamma, \gamma') = \frac{1}{\sqrt{n}} \| v_Q^{\sigma}(\gamma) - v_Q^{\sigma}(\gamma') \|. \end{array}$$

Complexity: O(|Q|)

- Definitions

-SignedDist Function

Orientation Preserving Distance

$$\begin{array}{l} \flat \ \gamma, \gamma' \in \Gamma, \\ \flat \ Q = \{q_1, \dots, q_n\} \subset \mathbb{R}^2, \\ \flat \ \sigma > 0, \\ d_Q^{\sigma}(\gamma, \gamma') = \frac{1}{\sqrt{n}} \| v_Q^{\sigma}(\gamma) - v_Q^{\sigma}(\gamma') \|. \end{array}$$

Complexity: O(|Q|)

Metric Property

Assuming Q is dense enough, d_Q^{σ} is a metric on Γ .

- Definitions

-SignedDist Function

Orientation Preserving Distance

$$\begin{array}{l} \triangleright \ \gamma, \gamma' \in \Gamma, \\ \triangleright \ Q = \{q_1, \dots, q_n\} \subset \mathbb{R}^2, \\ \triangleright \ \sigma > 0, \\ d_Q^{\sigma}(\gamma, \gamma') = \frac{1}{\sqrt{n}} \| v_Q^{\sigma}(\gamma) - v_Q^{\sigma}(\gamma') \|. \end{array}$$

Complexity: O(|Q|)

Metric Property

Assuming Q is dense enough, d_Q^{σ} is a metric on Γ .

In Practice

In practice, however, we found that |Q| = 20 is usually enough.

- Definitions

└─SMA and SLFS

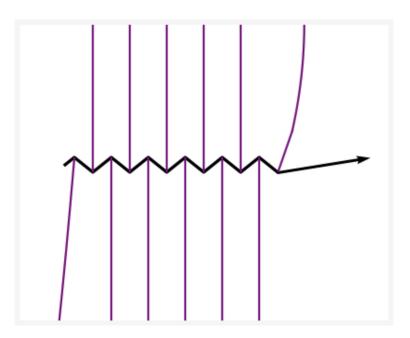


Figure: Medial axis in purple

- Definitions

-SMA and SLFS

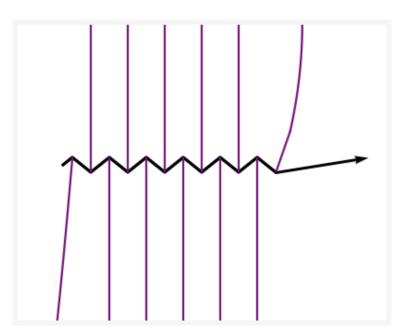


Figure: Medial axis in purple

As we can see, the MA captures the noise in a curve.

- Definitions

SMA and SLFS

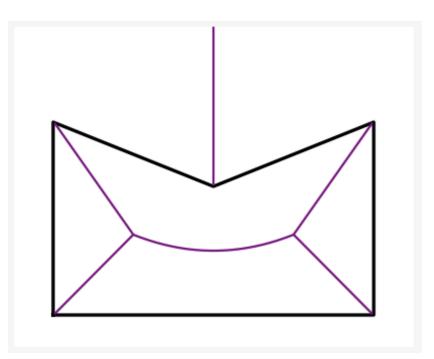


Figure: Medial axis in purple

- Definitions

-SMA and SLFS

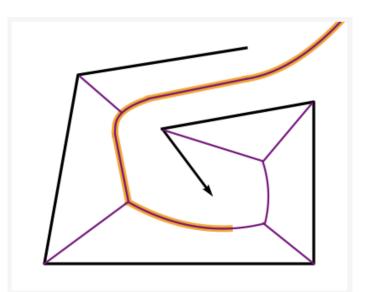


Figure: Medial axis in purple and Signed medial axis in orange

- Definitions

-SMA and SLFS

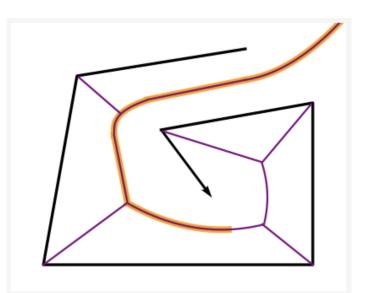


Figure: Medial axis in purple and Signed medial axis in orange

The notion of SMA comes to play to capture the sidedness of curve, i.e. capturing equidistance points with different v_q^{σ} signs.

- Definitions

-SMA and SLFS

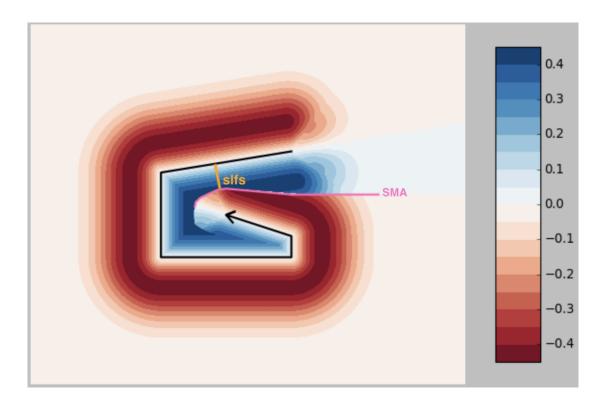


Figure: Signed medial axis in pink and Signed local feature size in orange

L Theorems

└─ Stability Theorems

Landmark stability

- Theorems

Stability Theorems

Landmark stability

Under some slfs-related mild conditions on q and q', for $\gamma \in \Gamma'$, we have

$$|v_q^\sigma(\gamma)-v_{q'}^\sigma(\gamma)|\leq rac{1}{\sigma}\|q-q'\|.$$

- Theorems

-Stability Theorems

Landmark stability

Under some slfs-related mild conditions on q and q', for $\gamma \in \Gamma'$, we have

$$|v_q^{\sigma}(\gamma) - v_{q'}^{\sigma}(\gamma)| \leq rac{1}{\sigma} \|q - q'\|.$$

Curve Stability

Theorems

-Stability Theorems

Landmark stability

Under some slfs-related mild conditions on q and q', for $\gamma \in \Gamma'$, we have

$$|v_q^{\sigma}(\gamma) - v_{q'}^{\sigma}(\gamma)| \leq rac{1}{\sigma} ||q - q'||.$$

Curve Stability

Under some slfs-related conditions on the place of q_i 's, for $\gamma, \gamma' \in \Gamma'$ we have

 $\sigma \mathtt{d}_{Q}^{\sigma}(\gamma,\gamma') \leq \mathtt{d}_{F}(\gamma,\gamma').$

Theorems

-Stability Theorems

Landmark stability

Under some slfs-related mild conditions on q and q', for $\gamma \in \Gamma'$, we have

$$|v_q^{\sigma}(\gamma) - v_{q'}^{\sigma}(\gamma)| \leq \frac{1}{\sigma} ||q - q'||.$$

Curve Stability

Under some slfs-related conditions on the place of q_i 's, for $\gamma, \gamma' \in \Gamma'$ we have

 $\sigma \mathtt{d}_{Q}^{\sigma}(\gamma,\gamma') \leq \mathtt{d}_{F}(\gamma,\gamma').$

In contrast, d_Q^{mD} relates to Hausdorff distance d_H :

Theorems

-Stability Theorems

Landmark stability

Under some slfs-related mild conditions on q and q', for $\gamma \in \Gamma'$, we have

$$|v_q^{\sigma}(\gamma) - v_{q'}^{\sigma}(\gamma)| \leq \frac{1}{\sigma} ||q - q'||.$$

Curve Stability

Under some slfs-related conditions on the place of q_i 's, for $\gamma, \gamma' \in \Gamma'$ we have

 $\sigma \mathtt{d}^{\sigma}_{Q}(\gamma,\gamma') \leq \mathtt{d}_{F}(\gamma,\gamma').$

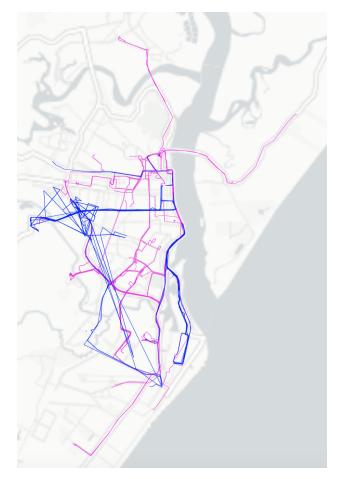
In contrast, d_Q^{mD} relates to Hausdorff distance d_H : Theorem

 $d_Q^{\mathsf{mD}}(\gamma, \gamma') \leq d_H(\gamma, \gamma').$

Average test errors with v_Q^{σ} and v_Q^{mD} vectorizations

	Feature Mapping	v_Q^σ	v_Q^{mD}
	Classifier	Test Error	Test Error
Car-Bus	Linear SVM	0.361	0.361
	Gaussian SVM	0.225	0.302
	Decision Tree	0.230	0.212
	Random Forest	0.157	0.183
Characters	Linear SVM	0.018	0.040
	Gaussian SVM	0.012	0.038
	Decision Tree	0.018	0.074
Ch	Random Forest	0.010	0.049
Pigeons	Linear SVM	0.003	0.506
	Gaussian SVM	0.006	0.517
	Decision Tree	0.016	0.516
	Random Forest	0.006	0.524

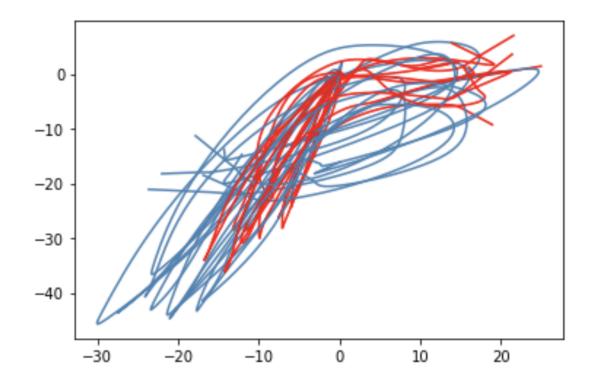
Buses: blue, Cars: pink



Average test errors with v_Q^{σ} and v_Q^{mD} vectorizations (car-bus)

	Feature Mapping	V_Q^{σ}	V_Q^{mD}
	Classifier	Test Error	Test Error
Car-Bus	Linear SVM	0.361	0.361
	Gaussian SVM	0.225	0.302
	Decision Tree	0.230	0.212
	Random Forest	0.157	0.183

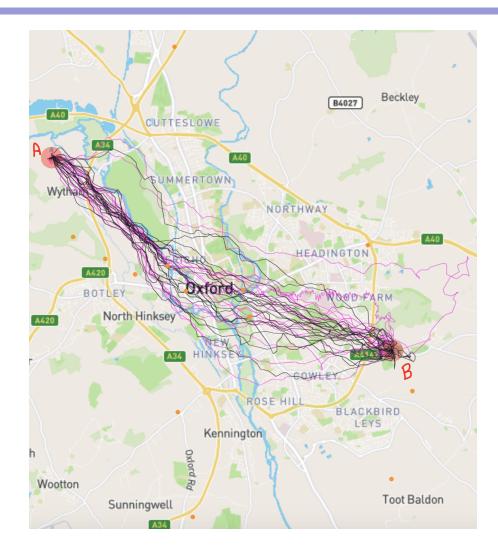
Letters p and r



Average test errors with v_Q^{σ} and v_Q^{mD} vectorizations (Characters)

	Feature Mapping	V_Q^{σ}	$v_Q^{\rm mD}$
	Classifier	Test Error	Test Error
Characters	Linear SVM	0.018	0.040
	Gaussian SVM	0.012	0.038
	Decision Tree	0.018	0.074
Ch	Random Forest	0.010	0.049

Experiments



Average test errors with v_Q^{σ} and v_Q^{mD} vectorizations (Pigeons)

	Feature Mapping	v_Q^{σ}	$v_Q^{\rm mD}$
	Classifier	Test Error	Test Error
Pigeons	Linear SVM	0.003	0.506
	Gaussian SVM	0.006	0.517
	Decision Tree	0.016	0.516
	Random Forest	0.006	0.524

Using the implemented codes

The related package is available in Python package index (PyPI) via the package

trjtrypy

Just: pip install trjtrypy

Jeff M. Phillips and Hasan Pourmahmood-Aghababa, Orientation-Preserving Vectorized Distance Between Curves, Mathematical and Scientific Machine Learning (MSML), August 2021.

- Jeff M. Phillips and Pingfan Tang, Simple Distances for Trajectories via Landmarks, ACM GIS SIGSPATIAL, 2019.
- Jeff M. Phillips and Pingfan Tang, Sketched MinDist, International Symposium on Computational Geometry, 2020.

 $\sqsubseteq_{\mathsf{Thank You}}$

THANK YOU!