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Orientation-Preserving Vectorized Distance Between Curves

Motivation

Distances on Trajectories and Their E�ciency

Consider two trajectories with m waypoints.

How can we measure their distance?

Popular Distances

I Hausdor↵ distance
Does not preserve orientation; Complexity ⇠ O(m).

I Dynamic Time Warping distance

I Fréchet distance

I Discrete Fréchet distance
All above 3 preserve orientation; Complexity ⇠ O(m2).

2 / 60



Orientation-Preserving Vectorized Distance Between Curves

Motivation

Distances on Trajectories and Their E�ciency

Consider two trajectories with m waypoints.

How can we measure their distance?

Popular Distances

I Hausdor↵ distance

Does not preserve orientation; Complexity ⇠ O(m).

I Dynamic Time Warping distance
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Orientation-Preserving Vectorized Distance Between Curves

Motivation

When m is large, all above distances are slow and so, e.g.

I KNN and almost all clustering algorithms with these distances
are expensive.

I More importantly, these metrics do not allow us to take the
advantage of other ML algorithms as most of them need a
vector/tensor/... as an input.

Properties of a distance we are interested in:

I It does not depend on m.

I It is as fast as calculating dot products in Euclidean spaces.

I It provides an embedding for curves in a Euclidean space in
order to enable the use of ML algorithms.
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Orientation-Preserving Vectorized Distance Between Curves

Definitions

MinDist Function

I MinDist Vectorization [Phillips-Tang 2019]

Let � be a curve and q 2 R2. Then

v
mD

q (�) = dist(q, �) = kq � pk.

For Q = {q1, . . . , qn} ⇢ R2, we get vmD

Q
: {curves} ! Rn by

v
mD

Q
(�) = (vmD

q1
(�), · · · , vmD

qn
(�)).
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Orientation-Preserving Vectorized Distance Between Curves

Definitions

MinDist Function

Figure: An example of MinDist function v
mD
q

for a curve.
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Orientation-Preserving Vectorized Distance Between Curves

Definitions

MinDist Function

MinDist Distance

Let �, �0 be two curves and Q = {q1, . . . , qn} ⇢ R2. Then

dmD

Q
(�, �0) =

1p
n
kvmD

Q
(�)� v

mD

Q
(�0)k.

Complexity: O(|Q|)

Question

How can we encode orientation preserving property into dmD

Q
?
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Orientation-Preserving Vectorized Distance Between Curves

Definitions

SignedDist Function

Definitions and Notation

I Simple Curve

A non-self-crossing (possibly closed) curve.

I �

The class of all a.e. di↵erentiable curves � in R2 that have
countably many number of self-crossings.

I �
0

The subset of � containing all simple curves.

I np
Considering the direction of curve, np is the unique normal at p.

20 / 60



Orientation-Preserving Vectorized Distance Between Curves

Definitions

SignedDist Function

Definitions and Notation

I Simple Curve

A non-self-crossing (possibly closed) curve.

I �

The class of all a.e. di↵erentiable curves � in R2 that have
countably many number of self-crossings.

I �
0

The subset of � containing all simple curves.

I np
Considering the direction of curve, np is the unique normal at p.

21 / 60



Orientation-Preserving Vectorized Distance Between Curves

Definitions

SignedDist Function

Definitions and Notation

I Simple Curve

A non-self-crossing (possibly closed) curve.

I �

The class of all a.e. di↵erentiable curves � in R2 that have
countably many number of self-crossings.

I �
0

The subset of � containing all simple curves.

I np
Considering the direction of curve, np is the unique normal at p.

22 / 60



Orientation-Preserving Vectorized Distance Between Curves

Definitions

SignedDist Function

Definitions and Notation

I Simple Curve

A non-self-crossing (possibly closed) curve.

I �

The class of all a.e. di↵erentiable curves � in R2 that have
countably many number of self-crossings.

I �
0

The subset of � containing all simple curves.

I np
Considering the direction of curve, np is the unique normal at p.

23 / 60



Orientation-Preserving Vectorized Distance Between Curves

Definitions

SignedDist Function

I SignedDist Function

Let � 2 �, q 2 R2 and � > 0 and set p = argminp02� kq � p
0k.

If
p is not an endpoint of �, we define

v
�
q (�) =

1

�
hnp(q), q � pie�

kq�pk2

�2 .

For endpoints we set

v
�
q (�) =

1

�
hnp, q � pi kqk1,p

kq � pk e
� kq�pk2

�2 ,

where kqk1,p is the l
1-norm of q in the coordinate system with

axis parallel to np and L (tangent line at p) and origin at p.
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Orientation-Preserving Vectorized Distance Between Curves

Definitions

SignedDist Function

Figure: An example of v�
q
function for a curve with sidedness encoded by

positive/negative values.
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Definitions

SignedDist Function

Figure: An example of v�
q
function for a closed curve encoded by

positive/negative values.
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Orientation-Preserving Vectorized Distance Between Curves

Definitions

SignedDist Function

I SignedDist Vectorization

I Q = {q1, . . . , qn} ⇢ R2,

I � > 0,

I Define v
�
Q
: � ! Rn by

v
�
Q
(�) = (v�q1(�), · · · , v

�
qn
(�)).

This embedding enables using ML algorithms, which is the biggest
advantage of our work.
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Orientation-Preserving Vectorized Distance Between Curves

Definitions

SignedDist Function

Orientation Preserving Distance

I �, �0 2 �,

I Q = {q1, . . . , qn} ⇢ R2,

I � > 0,

d�
Q
(�, �0) =

1p
n
kv�

Q
(�)� v

�
Q
(�0)k.

Complexity: O(|Q|)

Metric Property

Assuming Q is dense enough, d�
Q

is a metric on �.

In Practice

In practice, however, we found that |Q| = 20 is usually enough.
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Definitions

SMA and SLFS

Figure: Medial axis in purple

As we can see, the MA captures the noise in a curve.
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Definitions

SMA and SLFS

Figure: Medial axis in purple and Signed medial axis in orange

The notion of SMA comes to play to capture the sidedness of
curve, i.e. capturing equidistance points with di↵erent v�q signs.
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SMA and SLFS

Figure: Medial axis in purple and Signed medial axis in orange

The notion of SMA comes to play to capture the sidedness of
curve, i.e. capturing equidistance points with di↵erent v�q signs.
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Orientation-Preserving Vectorized Distance Between Curves

Definitions

SMA and SLFS

Figure: Signed medial axis in pink and Signed local feature size in orange
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Orientation-Preserving Vectorized Distance Between Curves

Theorems

Stability Theorems

Landmark stability

Under some slfs-related mild conditions on q and q
0, for � 2 �0, we

have

|v�q (�)� v
�
q0(�)| 

1

�
kq � q

0k.

Curve Stability

Under some slfs-related conditions on the place of qi ’s, for
�, �0 2 �0 we have

�d�
Q
(�, �0)  dF (�, �

0).

In contrast, dmD

Q
relates to Hausdor↵ distance dH :

Theorem

dmD

Q
(�, �0)  dH(�, �

0).
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Experiments

Average test errors with v�
Q
and vmD

Q
vectorizations

Feature Mapping v
�
Q

v
mD

Q

Classifier Test Error Test Error

C
ar
-B
us

Linear SVM 0.361 0.361
Gaussian SVM 0.225 0.302
Decision Tree 0.230 0.212
Random Forest 0.157 0.183

C
ha
ra
ct
er
s Linear SVM 0.018 0.040

Gaussian SVM 0.012 0.038
Decision Tree 0.018 0.074
Random Forest 0.010 0.049

P
ig
eo
ns

Linear SVM 0.003 0.506
Gaussian SVM 0.006 0.517
Decision Tree 0.016 0.516
Random Forest 0.006 0.524
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Experiments

Buses: blue, Cars: pink
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Experiments

Average test errors with v�
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Experiments

Letters p and r
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Experiments

Average test errors with v�
Q
and vmD

Q
vectorizations

(Characters)

Feature Mapping v
�
Q

v
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Q

Classifier Test Error Test Error

C
ha
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Experiments
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Experiments

Average test errors with v�
Q
and vmD

Q
vectorizations (Pigeons)

Feature Mapping v
�
Q

v
mD

Q

Classifier Test Error Test Error

P
ig
eo
ns

Linear SVM 0.003 0.506
Gaussian SVM 0.006 0.517
Decision Tree 0.016 0.516
Random Forest 0.006 0.524
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Experiments

Using the implemented codes

The related package is available in Python package index (PyPI)
via the package

trjtrypy

Just: pip install trjtrypy
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Thank You

1

Thank You!
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