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L Motivation

Distances on Trajectories and Their Efficiency
Consider two trajectories with 17 waypoints.

PN

How can we measure their distance?
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Orientation-Preserving Vectorized Distance Between Curves

L Motivation

Distances on Trajectories and Their Efficiency
Consider two trajectories with 17 waypoints.

PN

How can we measure their distance?

Popular Distances

» Hausdorff distance
Does not preserve orientation; Complexity ~ O(m).
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Orientation-Preserving Vectorized Distance Between Curves

L Motivation

Distances on Trajectories and Their Efficiency
Consider two trajectories with /1 waypoints.

PN

How can we measure their distance?
Popular Distances

» Hausdorff distance
Does orientation; Complexity

» Dynamic Time Warping distance
» Fréchet distance

» Discrete Fréchet distance
All above 3 orientation; Complexity
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Orientation-Preserving Vectorized Distance Between Curves

I—l\/lotivation
When m is , all above distances are slow and so, e.g.
> and almost all algorithms with these distances

are expensive.

» More importantly, these metrics do not allow us to take the
advantage of other as most of them need a
vector/tensor/... as an input.

Properties of a distance we are interested in:

» It does depend on m.
» Itis calculating dot products in Euclidean spaces.
» It provides an for curves in a Euclidean space in

order to enable the use of ML algorithms.
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Orientation-Preserving Vectorized Distance Between Curves
I—Definitions
L MinDist Function

» MinDist Vectorization [Phillips-Tang 2019]
Let v be a curve and g € R?. Then
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Let v be a curve and g € R?. Then
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
L MinDist Function

» MinDist Vectorization [Phillips-Tang 2019]
Let v be a curve and g € R?. Then

vi'P(v) = dist(q,7) = ||g — p|.
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
L MinDist Function

» MinDist Vectorization [Phillips-Tang 2019]
Let v be a curve and g € R?. Then

vi'P(v) = dist(q,7) = ||g — p|.

,°q ,oq

AN gl "

p = argmin,, . |lg — p'|
For Q ={q1,...,qn} C R?, we get vg‘D : {curves} — R" by

vg°(7) = (vl (1), v ().
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Orientation-Preserving Vectorized Distance Between Curves

I—Definitions
L MinDist Function

™

Figure: An example of MinDist function v(';‘D for a curve.
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I—Definitions
L MinDist Function

MinDist Distance
Let v,~' be two curves and Q ={q1,...,qn} CR?. Then

o2 (v.7) = \fHV °(7) = v3 ().
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MinDist Distance
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
L MinDist Function

MinDist Distance
Let v,~' be two curves and Q ={q1,...,qn} CR?. Then

2P (v, ) = \fHV °(v) = vgP ()l

Complexity: O(|Q))

Question
How can we encode orientation preserving property into dBD?
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
I—SignedDist Function

Definitions and Notation

» Simple Curve
A non-self-crossing (possibly closed) curve.
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
L SignedDist Function

Definitions and Notation

» Simple Curve
A non-self-crossing (possibly closed) curve.

> [
The class of all a.e. differentiable curves ~ in R? that have
countably many number of self-crossings.

> [’
The subset of [ containing all simple curves.

» n,

Considering the direction of curve, n, is the unique normal at p.
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I—Definitions
I—SignedDist Function

» SignedDist Function
let y €T, gcR?and o >0andset p= argming .., |qg — p'[|.
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
I—SignedDist Function

» SignedDist Function

let y €T, gcR?and o >0andset p= argming .. [|[qg — p'[|. If
p is not an endpoint of ~, we define

1 _llg=np|?

vg (7) = ;<”p(C7)a q—pe o’
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
I—SignedDist Function

» SignedDist Function
let y €T, gcR?and o >0andset p= argming .. [|[qg — p'[|. If
p is not an endpoint of ~, we define

1 _lla—pl?

vg () = ;<”p(Q)a q—pe

oq o q
S np(q) ’Yﬁ\/

P

Y
np(q)
For endpoints we set

1 lallocp —la=pl®
vg(V) = =(np,q—p)y—— e 7,

A P

where ||g||co,p is the [°°-norm of g in the coordinate system with
axis parallel to n, and L (tangent line at p) and origin at p.
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
I—SignedDist Function
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Figure: An example of v function for a curve with sidedness encoded by
positive/negative values.
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
I—SignedDist Function
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Figure: An example of v function for a closed curve encoded by
positive/negative values.
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Orientation-Preserving Vectorized Distance Between Curves
I—Definitions
I—SignedDist Function

» SignedDist Vectorization
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Orientation-Preserving Vectorized Distance Between Curves
I—Definitions
I—SignedDist Function

» SignedDist Vectorization

> Q:{ql,...,qn}CRz,
» o >0,
» Define v : T — R” by

va(7) = (v, (7). vg,(7))-
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
I—SignedDist Function

» SignedDist Vectorization

> Q:{ql,...,qn}CRz,
» o >0,
» Define v : T — R” by

This embedding enables using IVIL algorithms, which is the biggest
advantage of our work.
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Orientation-Preserving Vectorized Distance Between Curves
I—Definitions
I—SignedDist Function

Orientation Preserving Distance
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Orientation Preserving Distance

> v,v €T,
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Orientation-Preserving Vectorized Distance Between Curves
I—Definitions
I—SignedDist Function

Orientation Preserving Distance

> v,v €T,
> Q:{ql,...,qn}CRz,
» o >0,

da(v,7) = f||VQ( ) = va ()l

Complexity: O(|Q])
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
I—SignedDist Function

Orientation Preserving Distance

> v,v €T,
> Q:{ql,...,qn}CR2,
» o >0,

dg(v,7') = \fllvo( 7) = vl
Complexity: O(|Q])

Metric Property
Assuming Q is dense enough, d, is a metric on I
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
I—SignedDist Function

Orientation Preserving Distance

> v,v €T,
> Q:{ql,...,qn}CR2,
» o >0,

do(7,7) = \f”VQ( ) = vo(Y)Il
Complexity: O(|Q])

Metric Property

Assuming Q is dense enough, d, is a metric on I

In Practice
In practice, however, we found that |Q| = 20 is usually enough.
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Orientation-Preserving Vectorized Distance Between Curves
I—Definitions

L_SMA and SLFS
e

Figure: Medial axis in purple
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
L-SMA and SLFs

Figure: Medial axis in purple

As we can see, the MA captures the noise in a curve.
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions

L_SMA and SLFS
e

Figure: Medial axis in purple
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions

L_SMA and SLFS
e

Figure: Medial axis in purple and Signed medial axis in orange
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions

L_SMA and SLFS
e

Figure: Medial axis in purple and Signed medial axis in orange

The notion of SMA comes to play to capture the sidedness of
curve, i.e. capturing equidistance points with different vg signs.
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Orientation-Preserving Vectorized Distance Between Curves
- Definitions
L-SMA and SLFs
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Figure: Signed medial axis in pink and Signed local feature size in orange
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Orientation-Preserving Vectorized Distance Between Curves
|—Theorems

L Stability Theorems
e

Landmark stability
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|—Theorems
L Stability Theorems

Landmark stability

Under some slfs-related mild conditions on g and ¢’, for v € [, we
have

g o 1
vg () = vg (I < ~llg = q'll

Curve Stability

Under some slfs-related conditions on the place of g;'s, for
v,7 € " we have

cdd(v,v') < dr(y.7).
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Under some slfs-related mild conditions on g and ¢’, for v € [, we
have
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Orientation-Preserving Vectorized Distance Between Curves
|—Theorems
L Stability Theorems

Landmark stability

Under some slfs-related mild conditions on g and ¢’, for v € [, we
have

g o 1
vg () = vg (I < ~llg = q'll

Curve Stability

Under some slfs-related conditions on the place of g;'s, for
v,7 € " we have

0dq(7,7") < de(v.7"):

In contrast, ng relates to Hausdorff distance dgy:

Theorem
aBP(v,7") < du(v, 7).
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Orientation-Preserving Vectorized Distance Between Curves

L Experiments

Average test errors with vg and vQ vectorizations

Feature Mapping Vo vg‘D

Classifier Test Error | Test Error
., | Linear SVM 0.361 0.361
4 | Gaussian SVM 0.225 0.302
5 | Decision Tree 0.230 0.212
“ | Random Forest 0.157 0.183
4 Linear SVM 0.018 0.040
© | Gaussian SVM 0.012 0.038
S | Decision Tree 0.018 0.074
S | Random Forest 0.010 0.049
,, | Linear SVM 0.003 0.506
§ Gaussian SVM 0.006 0.517
S!_D Decision Tree 0.016 0.516

Random Forest 0.006 0.524
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L Experiments

Buses: blue, Cars:
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Orientation-Preserving Vectorized Distance Between Curves

L Experiments

Average test errors with vg and v3® vectorizations (car-bus)

Feature Mapping vg vaP
Classifier Test Error | Test Error
» | Linear SVM 0.361 0.361
1 | Gaussian SVM 0.225 0.302
5 | Decision Tree 0.230 0.212
“ | Random Forest 0.157 0.183
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Letters p and r

L Experiments

=20
-30 -
-40
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L Experiments

Average test errors with vg and vg‘D vectorizations

(Characters)
Feature Mapping vy v
Classifier Test Error | Test Error
& Linear SVM 0.018 0.040
© | Gaussian SVM 0.012 0.038
% Decision Tree 0.018 0.074
S | Random Forest 0.010 0.049
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L Experiments
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L Experiments

Average test errors with vg and v3" vectorizations (Pigeons)

Feature Mapping vg vaP
Classifier Test Error | Test Error
,, | Linear SVM 0.003 0.506
§ Gaussian SVM 0.006 0.517
51_0 Decision Tree 0.016 0.516
Random Forest 0.006 0.524
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L Experiments

Using the implemented codes

The related package is available in Python package index (PyPl)
via the package

trjtrypy

Just: pip install trjtrypy
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L Thank You

THANK YOU!
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