DEEP AUTOENCODERS: FROM UNDERSTANDING TO GENERALIZATION GUARANTEES

Romain Cosentino ¹ Randall Balestriero ¹ Richard Baraniuk ¹ Behnaam Aazhang ¹

¹Rice University

Autoencoders

Autoencoders: Piecewise Affine Formalism

$$\boldsymbol{D} \circ \boldsymbol{E}(\boldsymbol{x}) = \sum_{\omega \in \Omega} \mathbf{1}_{\{\boldsymbol{x} \in \omega\}} (A^{D}_{\omega} A^{E}_{\omega} \boldsymbol{x} + A^{D}_{\omega} B^{E}_{\omega} + B^{D}_{\omega}),$$

- $\mathbf{x} \in \omega \subset \mathbb{R}^d$
- Ω is a partition of the space
- A^D_ω ∈ ℝ^{d×h}, A^E_ω ∈ ℝ^{h×d}, B^E_ω ∈ ℝ^h and B^D_ω ∈ ℝ^d with d being the dimension of the input data and h the bottleneck dimension.

$$A^{\mathcal{E}}_{\omega} = W^{L}Q^{L-1}_{\omega}W^{L-1}\dots Q^{1}_{\omega}W^{1} \quad \text{and} \quad B^{\mathcal{E}}_{\omega} = \boldsymbol{b}^{L} + \sum_{i=1}^{L-1} W^{L}Q^{L-1}_{\omega}W^{L-1}\dots Q^{i}_{\omega}\boldsymbol{b}^{i}.$$

- $W^\ell \in \mathbb{R}^{d_\ell imes d_\ell \mathbf{1}}, \boldsymbol{b}^\ell \in \mathbb{R}^{d_\ell}$ the affine parameters of each layer,
- Q^{ℓ} the diagonal matrices encoding the region induced states of the nonlinearities, (0,1) for ReLU, (-1,1) for absolute value

2 Layers ReLU Network : Piecewise Affine Partitions

$$f(\mathbf{x}) = W^2 \operatorname{ReLU}(W^1 \mathbf{x}), \text{ where } W^1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, W^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

•
$$\mathbf{x_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad f(\mathbf{x_1}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \operatorname{ReLU} \left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right)$$
$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{Q_{\omega_1}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

 $\rightarrow \mathbf{x_1} \in \omega_1$

•
$$\mathbf{x}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
, $f(\mathbf{x}_2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ReLU $\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{Q_{\omega_2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ $\rightarrow \mathbf{x}_2 \in \omega_2$
• $\mathbf{x}_3 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

$$ightarrow \mathbf{x_3} \in \omega_1$$

Autoencoder Input Space Partitioning

FIGURE 1: 2-dimensional visualizations of the input space partitioning - To reconstruct its input, an AE achieves an affine map for each region - (Left) with bias (Right) zeros bias.

- Each region (described by a specific color) has a particular: $A^{D}_{\omega} \in \mathbb{R}^{d \times h}$, $A^{E}_{\omega} \in \mathbb{R}^{h \times d}$, $B^{E}_{\omega} \in \mathbb{R}^{h}$ and $B^{D}_{\omega} \in \mathbb{R}^{d}$.
- The "code" of each region, ω ∈ Ω, is given by the Q^ℓ_ω.

• Regardless of the dataset and neural network architecture: the number of regions for any given ball is much larger than the number of data

Understand how one can control these regions to equip *autoencoders* with **generalisation guarantees**

The Decoder's Surface

Decoder Continuous Piecewise Affine Surface

Per region Jacobian of the decoder

$$\forall \omega \in \Omega^D, J_{\omega}[\boldsymbol{D}] = \boldsymbol{A}_{\omega}^D,$$

where the columns of A^{D}_{ω} form the basis of the tangent space induced by D.

Assumption: Data Lie on The Orbit of a Group

Orbit of digit "7" w.r.t Rotation Group

Which group should we consider?

A LIE GROUP ASSUMPTION

Lie Group: Is a group that is a differentiable manifold.

Rotation Group:
$$SO(2) = \left\{ \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} | \theta \in \mathbb{R}/2\pi\mathbb{Z} \right\}.$$

Exponential Map: Any matrix Lie group can be defined via an exponential map.

Rotation Group:
$$SO(2) = \left\{ \exp(heta G) | G = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, heta \in \mathbb{R}/2\pi\mathbb{Z}
ight\}.$$

Orbit w.r.t Lie Group: The data x are modeled by

$$\boldsymbol{x}(\theta) = \exp(\theta G)\boldsymbol{x}(0),$$

the orbit of x(0) with respect to the group induced by $exp(\theta G)$.

Equivariance Lie Group Regularizations

$$\mathcal{L}_{\text{LieReg}} = \underbrace{\sum_{i=1}^{n} \| \mathbf{D}(\mathbf{E}(x_i)) - x_i \|}_{\text{Reconstruction Error}} + \min_{G} \underbrace{\sum_{\omega \in \Omega^D} \min_{\theta} \left\| \exp(\theta G) A_{\omega_0}^D - A_{\omega}^D \right\|}_{\text{Lie Group Assumption}}$$

Learning with an exponential map $\exp(\theta G)$

- 1. Non-Convex
- 2. Tedious Computation of the Gradient

Local approximation

 $\exp(\theta G) \approx_{\theta \sim 0} I + \theta G$

- $1. \ {\rm Only} \ {\rm for} \ {\rm small} \ {\rm transformations}$
- 2. Need to know the neighbors of each sample

LOCALLY CONSTRAINING THE CURVATURE

$$\mathcal{L}_{\text{LieReg}} \approx \sum_{i=1}^{n} \|\mathbf{D}(\mathbf{E}(x_i)) - x_i\| + \min_{G} \sum_{\omega \in \Omega^{D}} \sum_{\omega' \in \mathcal{N}(\omega)} \min_{\theta} \left\| A_{\omega}^{D} - (I + \theta G) A_{\omega'}^{D} \right\|,$$

GENERALISATION GUARANTEE

1. If the Decoder approximates the tangent space of the data at a position.

2. If the Lie group regularization is 0.

Then

The approximation of the data manifold is upper-bounded by the sum of the radius of each region.

Theorem

If on a region $\omega' \in \Omega^D$ the matrix $A^D_{\omega'}$, forms a basis of the manifold tangent space on this region, and the Lie group regularization is 0 then for all region $\omega \in \Omega^D$ the basis vectors of A^D_{ω} are the basis vector of the tangent of the data manifold with

$$d\left(\cup_{\omega\in\Omega^D}\mathcal{T}_{AE}(\omega),\mathcal{X}
ight)\leq\sum_{\omega\in\Omega^D}\mathcal{R}_{AE}(\omega),$$

where $\mathcal{T}_{AE}(\omega)$ the tangent space of the AE for the region ω , \mathcal{X} denotes the data manifold, d defines the 2-norm distance, and $Rad(\omega_i)$ the radius of the region ω_i .

RESULTS

TABLE 1: Comparison of the testing reconstruction errors (×10⁻² \pm std ×10⁻²)

Dataset \ Model	AE	Den. AE	H.O.C. AE	Lie Group
CIFAR10	5.6 ± 0.05	5.0 ± 0.05	-	$\textbf{4.9}\pm0.07$
MNIST	12.01 ± 0.003	12.01 ± 0.004	12.01 ± 0.004	6.3 ± 0.1
CBF	62.38 ± 0.74	52.66 ± 0.76	51.09 ± 0.54	$\textbf{43.99} \pm 1.2$
Yoga	33.76 ± 0.81	33.29 ± 0.72	32.08 ± 0.42	$\textbf{20.28} \pm 1.1$
Trace	13.95 ± 0.45	11.28 ± 0.57	12.57 ± 0.21	$\textbf{10.91} \pm 0.45$
Wine	63.06 ± 0.02	59.34 ± 0.02	49.94 ± 0.02	$\textbf{19.01} \pm 0.02$
ShapesAll	67.98 ± 3.0	58.67 ± 1.4	61.42 ± 5.5	$\textbf{52.97} \pm 1.9$
FiftyWords	64.91 ± 1.7	60.91 ± 1.0	60.92 ± 0.7	$\textbf{57.89} \pm 1.0$
WordSynonyms	70.95 ± 1.5	66.02 ± 0.8	66.52 ± 0.5	$\textbf{62.22} \pm 1.1$
InsectSounds	51.86 ± 0.6	40.24 ± 0.8	41.93 ± 0.6	$\textbf{38.11}\pm0.9$
ECG5000	21.92 ± 0.75	20.31 ± 0.39	20.31 ± 0.36	$\textbf{18.06}\pm0.9$
Earthquakes	56.23 ± 4.1	54.62 ± 4.1	51.79 ± 1.0	$\textbf{50.20} \pm 0.5$
Haptics	37.25 ± 0.2	36.02 ± 1.8	27.21 ± 0.5	$\textbf{16.94} \pm 3.4$
FaceFour	49.82 ± 1.0	48.51 ± 0.8	48.52 ± 0.7	$\textbf{46.00} \pm 0.6$
Synthetic	95.61 ± 1.3	89.37 ± 1.0	88.47 ± 0.9	$\textbf{55.87} \pm 0.8$

Conclusion & Directions

- We propose a way to learn an equivariant AE.
- The underlying group is learned via the Lie group generator G.
- Under the Lie group assumption on the data, we obtain generalization guarantees.
- Propose a way to develop contraints on the approximated manifold that are assumption driven.

- Learning Lie group is non trivial.
- Generalizing to "pancakes" and multiple orbits.
- Provide efficient and principled ways to sample neighboring regions.