DEEP AUTOENCODERS: FROM UNDERSTANDING TO
GENERALIZATION GUARANTEES

Romain Cosentino ! Randall Balestriero * Richard Baraniuk
! Behnaam Aazhang !

1Rice University

1/15



AUTOENCODERS
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AUTOENCODERS: PIECEWISE AFFINE FORMALISM

DoE(x) =Y Ilixew}(ADALX + ADBL + BY),
weN
* xcwCR?

® Q) is a partition of the space

o AD e RI*h AL e R"*9 BE e R" and BY € R? with d being the
dimension of the input data and h the bottleneck dimension.

L—1
=W twht Tt QAW and =b" 4+ > WrQSTTwt L QLb.

i=1
o W’ e R¥*%-1 p* c RY% the affine parameters of each layer,

e Q’ the diagonal matrices encoding the region induced states of the
nonlinearities, (0, 1) for ReLU, (—1,1) for absolute value
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2 LAYERS RELU NETWORK : PIECEWISE AFFINE PARTITIONS

f(x) = W2ReLU(W'x), where Wl = (1 fl> W2 = (‘1) [1)) .
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AUTOENCODER INPUT SPACE PARTITIONING

Ficure 1: 2-dimensional visualizations of the input space partitioning - To
reconstruct its input, an AE achieves an affine map for each region - (Left) with bias
(Right) zeros bias.

® Each region (described by a specific color) has a particular: A2 € R¥*",
AL e R™9 B e R" and BY € R.

® The "code" of each region, w € Q, is given by the Qﬁ.
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NUMBER OF REGIONS VS NUMBER OF DATA
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FicUure 2: Left: data - Cifarl0 and MNIST. Right: regions - small MLP, large MLP,
ConvNet.

® Regardless of the dataset and neural network architecture: the number of
regions for any given ball is much larger than the number of data

6/15



OBJECTIVE

Understand how one can control these regions to equip
autoencoders with generalisation guarantees
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THE DECODER’'S SURFACE
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Decoder Continuous Piecewise Affine Surface
Per region Jacobian of the decoder

Vw e QP J,[D] = A,

where the columns of AZ form the basis of the tangent space induced by D.
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ASSUMPTION: DATA LIE ON THE ORBIT OF A GROUP

Orbit of digit "7" w.r.t Rotation Group

Which group should we consider?
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A LIE GROUP ASSUMPTION

Lie Group: Is a group that is a differentiable manifold.
. ) [ [cos(8) —sin(6)
Rotation Group: SO(2) = {(sin(&) cos(0) |0 € R/27Z ;.
Exponential Map: Any matrix Lie group can be defined via an exponential map.

Rotation Group: SO(2) = {exp(@G)\G = (2 _01) ,0 € R/27rZ}.

Orbit w.r.t Lie Group: The data x are modeled by
x(60) = exp(0G)x(0),

the orbit of x(0) with respect to the group induced by exp(6G).
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EQUIVARIANCE LIE GROUP REGULARIZATIONS

Liickeg = Y ID(E(x)) = xi[| + min " min Hexp(ac)Afj0 - ABH

i=1 weQb

Reconstruction Error Lie Group Assumption

Learning with an exponential map

exp(0G)

1. Non-Convex

. Tedious Computation of the Gradient
Local approximation

exp(0G) ~p~0 | +0G

1. Only for small transformations

. Need to know the neighbors of each sample
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LocALLy CONSTRAINING THE CURVATURE

Llickes NZHD(E(X, — x| +min 33 min HAD—(/+0G)A ‘

weQP w'EN(w)

X (I +0G)
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GENERALISATION GUARANTEE

1. If the Decoder approximates the tangent space of the data at a position.

2. If the Lie group regularization is 0.
Then

The approximation of the data manifold is upper-bounded by the sum of the
radius of each region.

THEOREM
If on a region w' € QP the matrix AP, forms a basis of the manifold tangent
space on this region, and the Lie group regularization is 0 then for all region
w € QP the basis vectors of A are the basis vector of the tangent of the data
manifold with

d (UyeqnTae(w), X) < ) Rad(w),

wenb

where Tap(w) the tangent space of the AE for the region w, X denotes the

data manifold, d defines the 2-norm distance, and Rad(w;) the radius of the
region wj.
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RESuLTS

TasLE 1: Comparison of the testing reconstruction errors (x1072 4 std x 1072)

| Dataset | Model | AE Den. AE | H.0.C. AE [ Lie Group |

CIFAR10 5.6 £ 0.05 5.0 £0.05 - 4.9 + 0.07

MNIST 12.01 +0.003 | 12.01 +0.004 | 12.01 £+ 0.004 6.3+0.1

CBF 62.38+0.74 | 52.66 £0.76 | 51.094+0.54 | 43.99 +1.2
Yoga 33.76 £0.81 | 33.29+0.72 | 32.08+0.42 | 20.28+1.1
Trace 13.95+0.45 | 11.28+0.57 | 12.57 £0.21 | 10.91 +0.45
Wine 63.06 +0.02 | 59.34 +£0.02 | 49.94 4+ 0.02 | 19.01 4+ 0.02
ShapesAll 67.98 + 3.0 58.67 + 1.4 61.42 +5.5 5297+ 1.9
FiftyWords 64.91 +1.7 60.91 +1.0 60.92 + 0.7 57.89+1.0
WordSynonyms 7095+ 15 66.02 + 0.8 66.52 + 0.5 62.22+1.1
InsectSounds 51.86 + 0.6 40.24 + 0.8 41.93+0.6 38.11+0.9
ECG5000 21.924+0.75 | 20.31+0.39 | 20.31 +£0.36 | 18.06 £0.9
Earthquakes 56.23 +4.1 54.62 + 4.1 51.79+ 1.0 50.20 £ 0.5
Haptics 37.25+0.2 36.02+1.8 2721+ 05 16.94 + 3.4
FaceFour 49,82+ 1.0 48.51 + 0.8 48.52 + 0.7 46.00 + 0.6
Synthetic 95.61+1.3 89.37 + 1.0 88.47 + 0.9 55.87 + 0.8
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CONCLUSION & DIRECTIONS

We propose a way to learn an equivariant AE.
The underlying group is learned via the Lie group generator G.

Under the Lie group assumption on the data, we obtain generalization
guarantees.

Propose a way to develop contraints on the approximated manifold that
are assumption driven.

Learning Lie group is non trivial.
Generalizing to "pancakes" and multiple orbits.

Provide efficient and principled ways to sample neighboring regions.



