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Autoencoders
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Autoencoders: Piecewise Affine Formalism

D ◦ E(x) =
∑
ω∈Ω

1{x∈ω}(A
D
ωA

E
ωx + AD

ωB
E
ω + BD

ω ),

• x ∈ ω ⊂ Rd

• Ω is a partition of the space
• AD

ω ∈ Rd×h, AE
ω ∈ Rh×d , BE

ω ∈ Rh and BD
ω ∈ Rd with d being the

dimension of the input data and h the bottleneck dimension.

AE
ω =W LQL−1

ω W L−1 . . .Q1
ωW

1 and BE
ω = bL +

L−1∑
i=1

W LQL−1
ω W L−1 . . .Q i

ωbi .

• W ` ∈ Rd`×d`−1 , b` ∈ Rd` the affine parameters of each layer,
• Q` the diagonal matrices encoding the region induced states of the

nonlinearities, (0, 1) for ReLU, (−1, 1) for absolute value
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2 Layers ReLU Network : Piecewise Affine Partitions

f (x) = W 2ReLU(W 1x), where W 1 =

(
1 0
0 −1

)
,W 2 =

(
0 1
1 0

)
.

• x1 =

(
1
2

)
, f (x1) =

(
0 1
1 0

)
ReLU

((
1 0
0 −1

)(
1
2

))
=

(
0 1
1 0

)(
1 0
0 0

)
︸ ︷︷ ︸

Qω1

(
1 0
0 −1

)(
1
2

)

→ x1 ∈ ω1

• x2 =

(
1
−2

)
, f (x2) =

(
0 1
1 0

)
ReLU

((
1 0
0 −1

)(
1
−2

))
=

(
0 1
1 0

)(
1 0
0 1

)
︸ ︷︷ ︸

Qω2

(
1 0
0 −1

)(
1
−2

)

→ x2 ∈ ω2

• x3 =

(
3
1

)
→ x3 ∈ ω1
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Autoencoder Input Space Partitioning

Figure 1: 2-dimensional visualizations of the input space partitioning - To
reconstruct its input, an AE achieves an affine map for each region - (Left) with bias
(Right) zeros bias.

• Each region (described by a specific color) has a particular: AD
ω ∈ Rd×h,

AE
ω ∈ Rh×d , BE

ω ∈ Rh and BD
ω ∈ Rd .

• The "code" of each region, ω ∈ Ω, is given by the Q`
ω.
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Number of regions VS Number of data
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Figure 2: Left: data - Cifar10 and MNIST. Right: regions - small MLP, large MLP,
ConvNet.

• Regardless of the dataset and neural network architecture: the number of
regions for any given ball is much larger than the number of data
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Objective

Understand how one can control these regions to equip
autoencoders with generalisation guarantees
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The Decoder’s Surface

Decoder Continuous Piecewise Affine Surface

Per region Jacobian of the decoder

∀ω ∈ ΩD , Jω[D] = AD
ω ,

where the columns of AD
ω form the basis of the tangent space induced by D.

8 / 15



Assumption: Data Lie on The Orbit of a Group

Orbit of digit "7" w.r.t Rotation Group

Which group should we consider?
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A Lie Group Assumption

Lie Group: Is a group that is a differentiable manifold.

Rotation Group: SO(2) =

{(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
|θ ∈ R/2πZ

}
.

Exponential Map: Any matrix Lie group can be defined via an exponential map.

Rotation Group: SO(2) =

{
exp(θG)|G =

(
0 −1
1 0

)
, θ ∈ R/2πZ

}
.

Orbit w.r.t Lie Group: The data x are modeled by

x(θ) = exp(θG)x(0),

the orbit of x(0) with respect to the group induced by exp(θG).
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Equivariance Lie Group Regularizations

LLieReg =
n∑

i=1

‖D(E(xi ))− xi‖︸ ︷︷ ︸
Reconstruction Error

+ min
G

∑
ω∈ΩD

min
θ

∥∥∥exp(θG)AD
ω0 − AD

ω

∥∥∥︸ ︷︷ ︸
Lie Group Assumption

Learning with an exponential map

exp(θG)

1. Non-Convex

2. Tedious Computation of the Gradient

Local approximation

exp(θG) ≈θ∼0 I + θG

1. Only for small transformations

2. Need to know the neighbors of each sample
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Locally Constraining the Curvature

LLieReg ≈
n∑

i=1

‖D(E(xi ))− xi‖+ min
G

∑
ω∈ΩD

∑
ω′∈N (ω)

min
θ

∥∥∥AD
ω − (I + θG)AD

ω′

∥∥∥ ,
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Generalisation Guarantee

1. If the Decoder approximates the tangent space of the data at a position.

2. If the Lie group regularization is 0.

Then

The approximation of the data manifold is upper-bounded by the sum of the
radius of each region.

Theorem
If on a region ω′ ∈ ΩD the matrix AD

ω′ forms a basis of the manifold tangent
space on this region, and the Lie group regularization is 0 then for all region
ω ∈ ΩD the basis vectors of AD

ω are the basis vector of the tangent of the data
manifold with

d (∪ω∈ΩDTAE (ω),X ) ≤
∑
ω∈ΩD

Rad(ω),

where TAE (ω) the tangent space of the AE for the region ω, X denotes the
data manifold, d defines the 2-norm distance, and Rad(ωi ) the radius of the
region ωi .

13 / 15



Results

Table 1: Comparison of the testing reconstruction errors (×10−2 ± std × 10−2)

Dataset \ Model AE Den. AE H.O.C. AE Lie Group
CIFAR10 5.6± 0.05 5.0± 0.05 - 4.9± 0.07
MNIST 12.01± 0.003 12.01± 0.004 12.01± 0.004 6.3± 0.1
CBF 62.38± 0.74 52.66± 0.76 51.09± 0.54 43.99± 1.2
Yoga 33.76± 0.81 33.29± 0.72 32.08± 0.42 20.28± 1.1
Trace 13.95± 0.45 11.28± 0.57 12.57± 0.21 10.91± 0.45
Wine 63.06± 0.02 59.34± 0.02 49.94± 0.02 19.01± 0.02
ShapesAll 67.98± 3.0 58.67± 1.4 61.42± 5.5 52.97± 1.9
FiftyWords 64.91± 1.7 60.91± 1.0 60.92± 0.7 57.89± 1.0
WordSynonyms 70.95± 1.5 66.02± 0.8 66.52± 0.5 62.22± 1.1
InsectSounds 51.86± 0.6 40.24± 0.8 41.93± 0.6 38.11± 0.9
ECG5000 21.92± 0.75 20.31± 0.39 20.31± 0.36 18.06± 0.9
Earthquakes 56.23± 4.1 54.62± 4.1 51.79± 1.0 50.20± 0.5
Haptics 37.25± 0.2 36.02± 1.8 27.21± 0.5 16.94± 3.4
FaceFour 49.82± 1.0 48.51± 0.8 48.52± 0.7 46.00± 0.6
Synthetic 95.61± 1.3 89.37± 1.0 88.47± 0.9 55.87± 0.8
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Conclusion & Directions

• We propose a way to learn an equivariant AE.
• The underlying group is learned via the Lie group generator G .
• Under the Lie group assumption on the data, we obtain generalization

guarantees.
• Propose a way to develop contraints on the approximated manifold that

are assumption driven.

• Learning Lie group is non trivial.
• Generalizing to "pancakes" and multiple orbits.
• Provide efficient and principled ways to sample neighboring regions.
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