
Kernel-Based Smoothness Analysis
of Residual Networks

Tom Tirer 1 Joan Bruna 2 Raja Giryes 1

1Tel Aviv University

2New York University

MSML21: Mathematical and Scientific Machine Learning

Tom Tirer (TAU) ResNet vs MLP NTKs MSML21 1 / 26



Overview

1 Introduction and Motivation: MLP and ResNet

2 Background on NTK

3 NTK for ResNet

4 Comparing the Smoothness of ResNet and MLP NTKs

5 Conclusion

Tom Tirer (TAU) ResNet vs MLP NTKs MSML21 2 / 26



Introduction and Motivation: MLP and ResNet

Deep neural networks have led to a major improvement in various fields. The
advance in the network performance is tightly related to the introduction of
various novel architectures.

One classical architectures is the multilayer perceptron (MLP), a plain
feed-forward network with fully connected layers.

Example: an MLP with L = 2 hidden layers
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Introduction and Motivation: MLP and ResNet

Mathematical model of an MLP with L hidden layers, input x ∈ Rd , parameter
vector θ := vec(w (L+1), {W (`)}), and output f (x ;θ) ∈ R

g (`) =
σw√
n
W (`)x (`−1), ` = 1, . . . , L (1)

x (`) = φ(g (`)), ` = 1, . . . , L

x (0) = x , f (x ,θ) = g (L+1) =
σw√
n
w (L+1)>x (L),

where φ(·) is an element-wise activation function, σw > 0 scales the standard
deviation of the weights, w (L+1) ∈ Rn, W (`) ∈ Rn×n, W (0) ∈ Rn×d , and all the

weights are initialized by the standard normal distribution w
(L+1)
i ,W

(`)
ij ∼ N (0, 1).
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Introduction and Motivation: MLP and ResNet

Deep residual network (ResNet) [He et al., 2016] is a modern alternative to
the classical MLP, which has led to a major leap in performance.

ResNets use skip connections, i.e., identity paths in the network that add to
the output features of a given layer its input features.

Example: a ResNet with L = 2 hidden layers
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Introduction and Motivation: MLP and ResNet

Mathematical model of a ResNet with L non-linear hidden layers, input x ∈ Rd ,
parameter vector θ := vec(w (L+1), {W (`)}, {V (`)},U), and output f (x ;θ) ∈ R

g (`) =
σw√
n
W (`)x (`−1), ` = 1, . . . , L (2)

x (`) = x (`−1) + α
σv√
n
V (`)φ(g (`)), ` = 1, . . . , L

x (0) =
1√
d
Ux , f (x ,θ) = g (L+1) =

σw√
n
w (L+1)>x (L),

where φ(·) is an element-wise activation function, σw , σv > 0 scale the standard
deviation of the weights, and α is a positive hyperparameter that weighs the
residual block. w (L+1) ∈ Rn, W (`),V (`) ∈ Rn×n, U ∈ Rn×d , and all the weights
are initialized by the standard normal distribution

w
(L+1)
i ,W

(`)
ij ,V

(`)
ij ,Uij ∼ N (0, 1).
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Introduction and Motivation: MLP and ResNet

Different efforts were dedicated to explaining the success of ResNets

Previous works mainly focused on the optimization advantages of ResNets
over MLPs, such as overcoming the problem of vanishing gradients [Veit et
al., 2016] and enjoying a better loss surface [Li et al., 2018], just to name a
few.

In different regression experiments, where the optimization of both models is
optimal (without any regularization), we observed another distinction
between the two ReLU-based models:
ResNets tend to promote smoother interpolations than MLPs

Why smoothness of the outputs is interesting?
Under some smoothness assumptions on the g.t. function (which creates the
data), several works connect better smoothness of interpolators with better
generalization [Lu et al., 2019; Giryes, 2020; Xie et al., 2020].
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Introduction and Motivation: MLP and ResNet

Empirical results:
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Introduction and Motivation: MLP and ResNet

Empirical results (the difference is more visible when the number of samples
decreases):
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Background on NTK

We choose to explore this difference between MLP and ResNet via the Neural
Tangent Kernel (NTK) approach [Jacot et al., 2018].

At initialization, when n −→∞ each pre-activation g
(`)
i (x), is a stochastic

Gaussian Process (GP) with zero mean [Neal, 2012]. Denote the GP kernel

(covariance) of this process by K (L+1)(x , x̃) := Eθ

[
g

(L+1)
i (x)g

(L+1)
i (x̃)

]
, we

have
f (x)f (x̃) = g (L+1)(x)g (L+1)(x̃)

n−→∞−−−−→
a.s.

K (L+1)(x , x̃)

Similarly, define the NTK as Θ(L+1)(x , x̃) := Eθ

〈
∂f (x ;θ)
∂θ , ∂f (x̃ ;θ)

∂θ

〉
where

n −→∞. Under mild conditions, we have at initialization〈
∂f (x ;θ)

∂θ
,
∂f (x̃ ;θ)

∂θ

〉
n−→∞−−−−→
a.s.

Θ(L+1)(x , x̃)

The significant impact of NTK: under appropriate conditions it can
characterize DNN training with gradient descent (GD).
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Background on NTK

Given the training data D = (X ,Y) and a loss function `(·, ·), consider
learning θ by GD minimization of

L =
∑

(xi ,yi )∈D

`(f (xi ;θ), yi ).

In continuous time (for simplicity):

θ̇t = −η ∂f (X ;θt)

∂θ

>
∇f (X ;θt)L

where f (X ;θt) = vec({f (xi ;θt)}xi∈X ) ∈ R|X |×1.

In the function space, we have

ḟ (X ;θt) =
∂f (X ;θt)

∂θ
θ̇t = −η ∂f (X ;θt)

∂θ

∂f (X ;θt)

∂θ

>
∇f (X ;θt)L.

Under appropriate NTK conditions: ∂f (X ;θt)
∂θ

∂f (X ;θt)
∂θ

> n−→∞−−−−→
a.s.

Θ (NTK Gram

matrix), where Θ ∈ R|X |×|X| with Θij = Θ(L+1)(xi , xj).

Tom Tirer (TAU) ResNet vs MLP NTKs MSML21 11 / 26



Background on NTK

Given the training data D = (X ,Y) and a loss function `(·, ·), consider
learning θ by GD minimization of

L =
∑

(xi ,yi )∈D

`(f (xi ;θ), yi ).

In continuous time (for simplicity):

θ̇t = −η ∂f (X ;θt)

∂θ

>
∇f (X ;θt)L

where f (X ;θt) = vec({f (xi ;θt)}xi∈X ) ∈ R|X |×1.

In the function space, we have
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Background on NTK

Recursive GP kernel expression for the MLP model in (1)

K (L+1)(x , x̃) = σ2
wT

([
K (L)(x , x) K (L)(x , x̃)
K (L)(x , x̃) K (L)(x̃ , x̃)

])
, (3)

K (1)(x , x̃) =
σ2
w

d
x>x̃ ,

where T (Σ) := E(u,v)∼N (0,Σ) [φ(u)φ(v)] (closed-form expression for ReLU).

Recursive NTK expression for the MLP model in (1) [Jacot et al., 2018]

Θ(L+1)(x , x̃) = K (L+1)(x , x̃) + Θ(L)(x , x̃) · σ2
w Ṫ

([
K (L)(x , x) K (L)(x , x̃)
K (L)(x , x̃) K (L)(x̃ , x̃)

])
,

(4)

Θ(1)(x , x̃) = K (1)(x , x̃),

where Ṫ (Σ) := E(u,v)∼N (0,Σ) [φ′(u)φ′(v)] (closed-form expression for ReLU).
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NTK for ResNet

We obtain the limiting GP kernel and NTK for the ResNet model in (2). The
model’s structure allows us to use general results for the existence of the
limits [Yang, 2019]. The results resemble those in [Huang et al., 2020], which
considered a similar model but with fixed weights at the first and last layers.

We also provide a theorem on the stability of the NTK during training
(extending the technique that was used in [Lee et al., 2019] for MLP). No
stability result appears in [Huang et al., 2020].

Theorem (GP kernel at initialization)

Consider the ResNet model in (2).

K̂
(L+1)
0 (x , x̃) := f (x ;θ0)f (x̃ ;θ0)

n−→∞−−−−→ K (L+1)(x , x̃) := Eθ [f (x ;θ)f (x̃ ;θ)],
where K (L+1)(x , x̃) can be computed recursively as following:

K (L+1)(x , x̃) = K (L)(x , x̃) + α2σ2
vσ

2
wT

([
K (L)(x , x) K (L)(x , x̃)
K (L)(x , x̃) K (L)(x̃ , x̃)

])
, (5)

K (1)(x , x̃) =
σ2
w

d
x>x̃ .
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NTK for ResNet

Theorem (NTK at initialization)

Consider the ResNet model in (2) and let the element-wise non-linearities be

bounded uniformly by e(cx2−ε) for some c , ε > 0. We have that

Θ̂
(L+1)
0 (x , x̃) :=

〈
∂f (x ;θ0)
∂θ , ∂f (x̃ ;θ0)

∂θ

〉
n−→∞−−−−→ Θ(L+1)(x , x̃) := Eθ

〈
∂f (x ;θ)
∂θ , ∂f (x̃ ;θ)

∂θ

〉
,

where Θ(L+1)(x , x̃) is given by

Θ(L+1)(x , x̃) = K (L+1)(x , x̃) + Π(0)(x , x̃) · K (1)(x , x̃) (6)

+ α2
L∑
`=1

Π(`)(x , x̃) ·
(

Σ(`+1)(x , x̃) + K (`)(x , x̃) · Σ̇(`+1)(x , x̃)
)

such that

Σ(`+1)(x, x̃) := σ
2
vσ

2
wT

([
K(`)(x, x) K(`)(x, x̃)

K(`)(x, x̃) K(`)(x̃, x̃)

])
, Σ̇(`+1)(x, x̃) := σ

2
vσ

2
w Ṫ

([
K(`)(x, x) K(`)(x, x̃)

K(`)(x, x̃) K(`)(x̃, x̃)

])
,

{K(`)(x, x̃)} are given in (5), and {Π(`)(x, x̃)} can be computed using the following recursive expression

Π(`)(x, x̃) = Π(`+1)(x, x̃)

(
1 + α2Σ̇(`+2)(x, x̃)

)
, Π(L)(x, x̃) = 1.
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NTK for ResNet

Theorem (Stability of the NTK during training)

Consider the ResNet model in (2) with activation function that satisfies some
conditions (given in the paper). Assume that λmin(Θ) > 0, the training set
D = (X ,Y) is contained in some compact set and x 6= x̃ for all x , x̃ ∈ X . Then,
for δ0 > 0 there exist R0 > 0, N and K > 1, such that for every n > N when
applying GD with LR η0 < 2(λmin(Θ) + λmax(Θ))−1 on `2 loss, the following
holds with probability at least 1− δ0 over the random initialization√ ∑

(xi ,yi )∈D

(f (xi ;θt)− yi )2 ≤
(

1− η0

3
λmin(Θ)

)t
R0,

t∑
j=1

‖θj − θj−1‖2 ≤
3KR0

λmin(Θ)
,

sup
t
‖Θ̂t − Θ̂0‖F ≤

6K 3R0

λmin(Θ)
n−0.5.
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NTK for ResNet

Theorem (Stability of the NTK during training)

... with high probability over the random initialization√ ∑
(xi ,yi )∈D

(f (xi ;θt)− yi )2 ≤
(

1− η0

3
λmin(Θ)

)t
R0,

t∑
j=1

‖θj − θj−1‖2 ≤
3KR0

λmin(Θ)
,

sup
t
‖Θ̂t − Θ̂0‖F ≤

6K 3R0

λmin(Θ)
n−0.5.

The first line implies convergence to zero training loss

The second line implies stability of the weights during training (the bound on
their amount of change does not depend on the network width n)

The third line shows the stability of the NTK Gram matrix, which implies

Θ̂t
n−→∞−−−−→ Θ
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NTK for ResNet

Numerical ResNet NTK results:
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Comparing the Smoothness of ResNet and MLP NTKs

We compare the smoothness of the results of ResNet and MLP in the NTK
regime using different evaluation methodologies.

We start with comparing upper bounds on the norm of the models’
“input-output Jacobians” supx

∥∥ ∂
∂x f (x)

∥∥
2

after training, which is possible
due to the NTK regime. These quantities can indicate smoothness (similarly
to the way Lipschitz continuity of the gradient is used in the optimization
literature).
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Comparing the Smoothness of ResNet and MLP NTKs

Starting with the Jacobians of MLP and ResNet, we have

sup
x

∥∥∥∥ ∂∂x fMLP(x)
∥∥∥∥

2

≤ σw√
n
‖w (L+1)‖2Cφ

σw√
d
‖W (1)‖

L∏
`=2

Cφ
σw√
n
‖W (`)‖

sup
x

∥∥∥∥ ∂∂x fResNet(x)
∥∥∥∥

2

≤ σw√
n
‖w (L+1)‖2

1√
d
‖U‖ ·

L∏
`=1

(
1 + αCφ

σv√
n
‖V (`)‖ σw√

n
‖W (`)‖

)

In the NTK regime (of both ResNet and MLP) the spectral norm of the
weights can be easily bounded. This is in contrast with the general case
where there is no precise way to control the weights of DNNs after training.

The spectral norm of, e.g., W (`)
t ∈ Rn×n obeys

‖W (`)
t ‖ ≤ ‖W

(`)
0 ‖+ ‖W (`)

t −W (`)
0 ‖

(a)

≤ 2
√
n + δ + C

(b)

≤ 3
√
n,

(a) holds with prob. above 1− 2e−δ
2/2 since W (`)

0 has i.i.d. standard normal
entries, and due to θt ∈ B(θ0,C := 3KR0

λmin(Θ) ) (from NTK stability theorem);

(b) with high prob. for
√
n� C .
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Comparing the Smoothness of ResNet and MLP NTKs

Using these properties of the NTK regime for finite, yet large n, we get

sup
x

∥∥∥∥ ∂∂x fMLP(x)

∥∥∥∥
2

≤ 2Cφσ
2
w (1 + 2

√
n

d
) (3Cφσw )L−1 := BMLP

sup
x

∥∥∥∥ ∂∂x fResNet(x)

∥∥∥∥
2

≤ 2σw (1 + 2

√
n

d
) (1 + 9αCφσvσw )L := BResNet

This factor
√

n
d is not surprising, since under rather mild conditions on X ,

the networks can fit any training data in the NTK regime, and thus the slope
of their output is not bounded by a constant number.
For typical value of 1 for the hyperparams., we get

BResNet

BMLP
=

(1 + 9αCφσvσw )L

3L−1(Cφσw )L
=

(1 + 9α)L

3L−1

A moderate value of α, such as 0.1, implies BResNet ≤ BMLP for any L ≥ 3,
which hints that ResNet NTK will be smoother.
For small enough α, increasing L (# nonlinear layers) is expected to increase
the smoothness distinction between the NTKs.
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Comparing the Smoothness of ResNet and MLP NTKs

We turn to visualize the NTKs and the NTK regression results in several
settings.

We measure the smoothness of NTK regression outputs by an approximated
L2-norm of the outputs’ second derivatives.

Given a normalized regression result f̄ = f /‖̂f ‖L2 we approximate ‖f̄ ′′‖L2 by

µ(f ) :=
( 1

N2

N/2−1∑
k=−N/2

|k |4|F (k)|2
) 1

2

,

where F (k) denotes FFT[{f̄ (xq)}](k).
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Comparing the Smoothness of ResNet and MLP NTKs

Recall the empirical results outside the NTK regime:
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Comparing the Smoothness of ResNet and MLP NTKs

Numerical NTK results:

Decreasing α yields a smoother ResNet NTK with smoother interpolation
results. For α = 1 the ResNet NTK is more similar to the MLP NTK, but
even then it appears smoother and less “edgy” than the MLP.
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Comparing the Smoothness of ResNet and MLP NTKs

Numerical NTK results:

For the MLP NTK, increasing L clearly reduces the smoothness (as observed
both visually and by the increase in µ). For the ResNet NTK this effect is
moderate for α = 1, and almost unseen for α = 0.1.
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Conclusion

We developed the NTK for a ResNet model and proved its stability during
training with gradient descent (under common NTK assumptions).

When both networks use ReLU activations, our smoothness examination
shows that ResNet, especially with moderately attenuated residual blocks,
yields smoother interpolations than MLP.

When the activation function is smooth (e.g., erf) the different NTKs have
similar smoothness (see the paper).

More technical details and numerical results for multivariate functions
appears in the paper.
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Conclusion

We developed the NTK for a ResNet model and proved its stability during
training with gradient descent (under common NTK assumptions).

When both networks use ReLU activations, our smoothness examination
shows that ResNet, especially with moderately attenuated residual blocks,
yields smoother interpolations than MLP.

When the activation function is smooth (e.g., erf) the different NTKs have
similar smoothness (see the paper).

More technical details and numerical results for multivariate functions
appears in the paper.

Thank You

Tom Tirer (TAU) ResNet vs MLP NTKs MSML21 26 / 26


	Introduction and Motivation: MLP and ResNet
	Background on NTK
	NTK for ResNet
	Comparing the Smoothness of ResNet and MLP NTKs
	Conclusion

