
Analyzing Finite Neural Networks:
Can We Trust Neural Tangent Kernel Theory?

Mariia Seleznova & Gitta Kutyniok

(Ludwig-Maximilians-Universität München)

MSML 2021
August 16-19, 2021

Deep Neural Networks (DNNs)

Definition: Assume the following notation:

I Number of layers L ≥ 2.

I Layers’ widths M`, ` = 0, . . . , L.

I Weights W ` ∈ RM`×M`−1 , ` ≥ 1.

I Biases b` ∈ RMl `, ` ≥ 1.

I (Non-linear) activation function φ : R→ R.

Then a deep neural network (DNN) is a function f : RM0 → RML
:

f (x) = WLφ(WL−1φ(WL−2φ(WL−3 . . .) + bL−1) + bL.

2 / 17

DNNs’ training dynamics

Consider training a DNN with parameters θ = {(W `, b`)}`=1,...,L on
dataset D = (X ,Y), X ∈ RN×M0 , Y ∈ RN×ML by gradient flow in time t
with loss function L:

θ̇(t) = −∇θL(f (t)(X),Y)

Then the dynamics of the output function on any input X̃ ∈ RÑ×M0 is
given by:

ḟ (t)(X̃) = ∇θf (t)(X̃) · θ̇(t)

Challenges:

I No analytical solutions for f (t) in general.

I No access to generalization error Ex ,y [L(f (t)(x), y)].

I No access to model’s stability and robustness.

; Neural Tangent Kernel (NTK) theory addresses these challenges in a
special case of infinitely-wide DNNs!

3 / 17

DNNs’ training dynamics

Consider training a DNN with parameters θ = {(W `, b`)}`=1,...,L on
dataset D = (X ,Y), X ∈ RN×M0 , Y ∈ RN×ML by gradient flow in time t
with loss function L:

θ̇(t) = −∇θL(f (t)(X),Y)

Then the dynamics of the output function on any input X̃ ∈ RÑ×M0 is
given by:

ḟ (t)(X̃) = ∇θf (t)(X̃) · θ̇(t)

Challenges:

I No analytical solutions for f (t) in general.

I No access to generalization error Ex ,y [L(f (t)(x), y)].

I No access to model’s stability and robustness.

; Neural Tangent Kernel (NTK) theory addresses these challenges in a
special case of infinitely-wide DNNs!

3 / 17

DNNs’ training dynamics

Consider training a DNN with parameters θ = {(W `, b`)}`=1,...,L on
dataset D = (X ,Y), X ∈ RN×M0 , Y ∈ RN×ML by gradient flow in time t
with loss function L:

θ̇(t) = −∇θL(f (t)(X),Y)

Then the dynamics of the output function on any input X̃ ∈ RÑ×M0 is
given by:

ḟ (t)(X̃) = ∇θf (t)(X̃) · θ̇(t)

Challenges:

I No analytical solutions for f (t) in general.

I No access to generalization error Ex ,y [L(f (t)(x), y)].

I No access to model’s stability and robustness.

; Neural Tangent Kernel (NTK) theory addresses these challenges in a
special case of infinitely-wide DNNs!

3 / 17

DNNs’ training dynamics

Consider training a DNN with parameters θ = {(W `, b`)}`=1,...,L on
dataset D = (X ,Y), X ∈ RN×M0 , Y ∈ RN×ML by gradient flow in time t
with loss function L:

θ̇(t) = −∇θL(f (t)(X),Y)

Then the dynamics of the output function on any input X̃ ∈ RÑ×M0 is
given by:

ḟ (t)(X̃) = ∇θf (t)(X̃) · θ̇(t)

Challenges:

I No analytical solutions for f (t) in general.

I No access to generalization error Ex ,y [L(f (t)(x), y)].

I No access to model’s stability and robustness.

; Neural Tangent Kernel (NTK) theory addresses these challenges in a
special case of infinitely-wide DNNs!

3 / 17

DNNs’ training dynamics

Consider training a DNN with parameters θ = {(W `, b`)}`=1,...,L on
dataset D = (X ,Y), X ∈ RN×M0 , Y ∈ RN×ML by gradient flow in time t
with loss function L:

θ̇(t) = −∇θL(f (t)(X),Y)

Then the dynamics of the output function on any input X̃ ∈ RÑ×M0 is
given by:

ḟ (t)(X̃) = ∇θf (t)(X̃) · θ̇(t)

Challenges:

I No analytical solutions for f (t) in general.

I No access to generalization error Ex ,y [L(f (t)(x), y)].

I No access to model’s stability and robustness.

; Neural Tangent Kernel (NTK) theory addresses these challenges in a
special case of infinitely-wide DNNs!

3 / 17

DNNs’ training dynamics

Consider training a DNN with parameters θ = {(W `, b`)}`=1,...,L on
dataset D = (X ,Y), X ∈ RN×M0 , Y ∈ RN×ML by gradient flow in time t
with loss function L:

θ̇(t) = −∇θL(f (t)(X),Y)

Then the dynamics of the output function on any input X̃ ∈ RÑ×M0 is
given by:

ḟ (t)(X̃) = ∇θf (t)(X̃) · θ̇(t)

Challenges:

I No analytical solutions for f (t) in general.

I No access to generalization error Ex ,y [L(f (t)(x), y)].

I No access to model’s stability and robustness.

; Neural Tangent Kernel (NTK) theory addresses these challenges in a
special case of infinitely-wide DNNs!

3 / 17

Neural Tangent Kernel Theory

Consider squared loss L(Ŷ ,Y) = 1
2N ‖(Ŷ − Y)‖2

2 and for simplicity set
ML = 1. Then the gradient flow dynamics of a DNN takes form:

θ̇(t) = −∇θL(f (t)(X),Y) = − 1

N
∇θf (t)(X)

T ·
(
f (t)(X)− Y

)
,

ḟ (t)(X̃) = ∇θf (t)(X̃) · θ̇(t) = − 1

N
∇θf (t)(X̃)∇θf (t)(X)

T︸ ︷︷ ︸
Θ(t)(X̃ ,X)

·
(
f (t)(X)− Y

)
.

Definition: Neural tangent kernel (NTK) of a DNN with output function
f and trainable parameters θ is given by

Θ(xi , xj) := ∇θf (xi)
T∇θf (xj), xi , xj ∈ RM0 .

4 / 17

Neural Tangent Kernel Theory

Consider squared loss L(Ŷ ,Y) = 1
2N ‖(Ŷ − Y)‖2

2 and for simplicity set
ML = 1. Then the gradient flow dynamics of a DNN takes form:

θ̇(t) = −∇θL(f (t)(X),Y) = − 1

N
∇θf (t)(X)

T ·
(
f (t)(X)− Y

)
,

ḟ (t)(X̃) = ∇θf (t)(X̃) · θ̇(t) = − 1

N
∇θf (t)(X̃)∇θf (t)(X)

T︸ ︷︷ ︸
Θ(t)(X̃ ,X)

·
(
f (t)(X)− Y

)
.

Definition: Neural tangent kernel (NTK) of a DNN with output function
f and trainable parameters θ is given by

Θ(xi , xj) := ∇θf (xi)
T∇θf (xj), xi , xj ∈ RM0 .

4 / 17

Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M` →∞, ` = 1, . . . , L− 1:[1]

I NTK is deterministic under random initialization:

Θ(0)(xi , xj)→ Eθ[Θ(0)(xi , xj)] = Θ∗(xi , xj),

where W`
ij =

σw√
M`

w`
ij , w`

ij ∼ N
(
0, 1
)
,

b`i = σbβ
`
i , β`i ∼ N (0, 1).

I NTK stays constant during training:

Θ(t)(xi , xj)→ Θ∗(xi , xj).

Then in the infinite-width limit gradient flow dynamics with squared loss:

ḟ (t)(X̃) = − 1

N
Θ∗(X̃ ,X) ·

(
f (t)(X)− Y

)
; Infinitely-wide DNNs evolve as kernel regression with NTK kernel!

5 / 17

Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M` →∞, ` = 1, . . . , L− 1:[1]

I NTK is deterministic under random initialization:

Θ(0)(xi , xj)→ Eθ[Θ(0)(xi , xj)] = Θ∗(xi , xj),

where W`
ij =

σw√
M`

w`
ij , w`

ij ∼ N
(
0, 1
)
,

b`i = σbβ
`
i , β`i ∼ N (0, 1).

I NTK stays constant during training:

Θ(t)(xi , xj)→ Θ∗(xi , xj).

Then in the infinite-width limit gradient flow dynamics with squared loss:

ḟ (t)(X̃) = − 1

N
Θ∗(X̃ ,X) ·

(
f (t)(X)− Y

)
; Infinitely-wide DNNs evolve as kernel regression with NTK kernel!

5 / 17

Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M` →∞, ` = 1, . . . , L− 1:[1]

I NTK is deterministic under random initialization:

Θ(0)(xi , xj)→ Eθ[Θ(0)(xi , xj)] = Θ∗(xi , xj),

where W`
ij =

σw√
M`

w`
ij , w`

ij ∼ N
(
0, 1
)
,

b`i = σbβ
`
i , β`i ∼ N (0, 1).

I NTK stays constant during training:

Θ(t)(xi , xj)→ Θ∗(xi , xj).

Then in the infinite-width limit gradient flow dynamics with squared loss:

ḟ (t)(X̃) = − 1

N
Θ∗(X̃ ,X) ·

(
f (t)(X)− Y

)
; Infinitely-wide DNNs evolve as kernel regression with NTK kernel!

5 / 17

Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M` →∞, ` = 1, . . . , L− 1:[1]

I NTK is deterministic under random initialization:

Θ(0)(xi , xj)→ Eθ[Θ(0)(xi , xj)] = Θ∗(xi , xj),

where W`
ij =

σw√
M`

w`
ij , w`

ij ∼ N
(
0, 1
)
,

b`i = σbβ
`
i , β`i ∼ N (0, 1).

I NTK stays constant during training:

Θ(t)(xi , xj)→ Θ∗(xi , xj).

Then in the infinite-width limit gradient flow dynamics with squared loss:

ḟ (t)(X̃) = − 1

N
Θ∗(X̃ ,X) ·

(
f (t)(X)− Y

)

; Infinitely-wide DNNs evolve as kernel regression with NTK kernel!

5 / 17

Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M` →∞, ` = 1, . . . , L− 1:[1]

I NTK is deterministic under random initialization:

Θ(0)(xi , xj)→ Eθ[Θ(0)(xi , xj)] = Θ∗(xi , xj),

where W`
ij =

σw√
M`

w`
ij , w`

ij ∼ N
(
0, 1
)
,

b`i = σbβ
`
i , β`i ∼ N (0, 1).

I NTK stays constant during training:

Θ(t)(xi , xj)→ Θ∗(xi , xj).

Then in the infinite-width limit gradient flow dynamics with squared loss:

ḟ (t)(X̃) = − 1

N
Θ∗(X̃ ,X) ·

(
f (t)(X)− Y

)
; Infinitely-wide DNNs evolve as kernel regression with NTK kernel!

5 / 17

Do finite DNNs behave as infinite-width ones?

Problems:

I If NTK matrix is constant, no feature learning occurs.

I Empirical performance of NTK and finite DNNs differs.[2],[3]

I In infinite-depth-and-width limit (L/M > 0), NTK of ReLU DNNs initialized
with σ2

w = 2, σ2
b = 0 is random.[4]

; It is not clear when NTK theory explains DNNs’ behavior!

Our contributions:

I Study ReLU and sigmoid DNNs with various hyperparameters (σw , σb, L,M).

I Identify two phases in hyperparameter space where NTK regime does and
does not hold.

I Study variance of DNNs output Varθ,D
[
f (t→∞)(x)

]
under NTK theory.

6 / 17

Do finite DNNs behave as infinite-width ones?

Problems:

I If NTK matrix is constant, no feature learning occurs.

I Empirical performance of NTK and finite DNNs differs.[2],[3]

I In infinite-depth-and-width limit (L/M > 0), NTK of ReLU DNNs initialized
with σ2

w = 2, σ2
b = 0 is random.[4]

; It is not clear when NTK theory explains DNNs’ behavior!

Our contributions:

I Study ReLU and sigmoid DNNs with various hyperparameters (σw , σb, L,M).

I Identify two phases in hyperparameter space where NTK regime does and
does not hold.

I Study variance of DNNs output Varθ,D
[
f (t→∞)(x)

]
under NTK theory.

6 / 17

Do finite DNNs behave as infinite-width ones?

Problems:

I If NTK matrix is constant, no feature learning occurs.

I Empirical performance of NTK and finite DNNs differs.[2],[3]

I In infinite-depth-and-width limit (L/M > 0), NTK of ReLU DNNs initialized
with σ2

w = 2, σ2
b = 0 is random.[4]

; It is not clear when NTK theory explains DNNs’ behavior!

Our contributions:

I Study ReLU and sigmoid DNNs with various hyperparameters (σw , σb, L,M).

I Identify two phases in hyperparameter space where NTK regime does and
does not hold.

I Study variance of DNNs output Varθ,D
[
f (t→∞)(x)

]
under NTK theory.

6 / 17

Do finite DNNs behave as infinite-width ones?

Problems:

I If NTK matrix is constant, no feature learning occurs.

I Empirical performance of NTK and finite DNNs differs.[2],[3]

I In infinite-depth-and-width limit (L/M > 0), NTK of ReLU DNNs initialized
with σ2

w = 2, σ2
b = 0 is random.[4]

; It is not clear when NTK theory explains DNNs’ behavior!

Our contributions:

I Study ReLU and sigmoid DNNs with various hyperparameters (σw , σb, L,M).

I Identify two phases in hyperparameter space where NTK regime does and
does not hold.

I Study variance of DNNs output Varθ,D
[
f (t→∞)(x)

]
under NTK theory.

6 / 17

Do finite DNNs behave as infinite-width ones?

Problems:

I If NTK matrix is constant, no feature learning occurs.

I Empirical performance of NTK and finite DNNs differs.[2],[3]

I In infinite-depth-and-width limit (L/M > 0), NTK of ReLU DNNs initialized
with σ2

w = 2, σ2
b = 0 is random.[4]

; It is not clear when NTK theory explains DNNs’ behavior!

Our contributions:

I Study ReLU and sigmoid DNNs with various hyperparameters (σw , σb, L,M).

I Identify two phases in hyperparameter space where NTK regime does and
does not hold.

I Study variance of DNNs output Varθ,D
[
f (t→∞)(x)

]
under NTK theory.

6 / 17

Do finite DNNs behave as infinite-width ones?

Problems:

I If NTK matrix is constant, no feature learning occurs.

I Empirical performance of NTK and finite DNNs differs.[2],[3]

I In infinite-depth-and-width limit (L/M > 0), NTK of ReLU DNNs initialized
with σ2

w = 2, σ2
b = 0 is random.[4]

; It is not clear when NTK theory explains DNNs’ behavior!

Our contributions:

I Study ReLU and sigmoid DNNs with various hyperparameters (σw , σb, L,M).

I Identify two phases in hyperparameter space where NTK regime does and
does not hold.

I Study variance of DNNs output Varθ,D
[
f (t→∞)(x)

]
under NTK theory.

6 / 17

Do finite DNNs behave as infinite-width ones?

Problems:

I If NTK matrix is constant, no feature learning occurs.

I Empirical performance of NTK and finite DNNs differs.[2],[3]

I In infinite-depth-and-width limit (L/M > 0), NTK of ReLU DNNs initialized
with σ2

w = 2, σ2
b = 0 is random.[4]

; It is not clear when NTK theory explains DNNs’ behavior!

Our contributions:

I Study ReLU and sigmoid DNNs with various hyperparameters (σw , σb, L,M).

I Identify two phases in hyperparameter space where NTK regime does and
does not hold.

I Study variance of DNNs output Varθ,D
[
f (t→∞)(x)

]
under NTK theory.

6 / 17

Randomness at initialization
Setup:

I Fully-connected tanh networks with L layers and constant width M.

I Initialized as W`
ij ∼ N

(
0,
σ2
w

M

)
, b`i ∼ N (0, σ2

b)

Eθ[Θ(0)(x ,x)2]

E2
θ[Θ(0)(x ,x)]

ratio measures randomness at initialization:

; Deep NNs with large σw are random at initialization!

We use standard parametrization instead of NTK parametrization here. However, for constant-
width networks this does not affect the results.

7 / 17

Randomness at initialization
Setup:

I Fully-connected tanh networks with L layers and constant width M.

I Initialized as W`
ij ∼ N

(
0,
σ2
w

M

)
, b`i ∼ N (0, σ2

b)

Eθ[Θ(0)(x ,x)2]

E2
θ[Θ(0)(x ,x)]

ratio measures randomness at initialization:

; Deep NNs with large σw are random at initialization!

We use standard parametrization instead of NTK parametrization here. However, for constant-
width networks this does not affect the results.

7 / 17

Randomness at initialization
Setup:

I Fully-connected ReLU networks with L layers and constant width M.

I Initialized as W`
ij ∼ N

(
0,
σ2
w

M

)
, b`i ∼ N (0, σ2

b)

Eθ[Θ(0)(x ,x)2]

E2
θ[Θ(0)(x ,x)]

ratio measures randomness at initialization:

; Deep NNs with large σw are random at initialization!

We use standard parametrization instead of NTK parametrization here. However, for constant-
width networks this does not affect the results.

8 / 17

Vanishing and exploding gradients

Behaviour of gradients at initialization is controlled by variable χ:[5]

χ := σ2
w

∫ [
φ
′(√

q∗v
)]2

Dv , Dv =
dv√
2π

e−v
2/2,

where q∗ = lim`→∞ q` and q` := 1
M`

∑M`
k=1

(
z`k
)2

is the pre-activation
“length” in layer `.

; χ depends on hyperparameters (σw , σb) and activation function φ.

We can identify the following situations based on χ:

I Chaotic phase: If χ > 1, gradients explode as they backpropagate.

I Ordered phase: If χ < 1, gradients vanish.

I �Edge of chaos� (EOC): χ ≈ 1 allows deeper signal propagation.

q`(x) depends only on the norm of x . Therefore, for simplicity of notation we can assume
normalized inputs and omit argument x here.

9 / 17

Vanishing and exploding gradients

Behaviour of gradients at initialization is controlled by variable χ:[5]

χ := σ2
w

∫ [
φ
′(√

q∗v
)]2

Dv , Dv =
dv√
2π

e−v
2/2,

where q∗ = lim`→∞ q` and q` := 1
M`

∑M`
k=1

(
z`k
)2

is the pre-activation
“length” in layer `.

; χ depends on hyperparameters (σw , σb) and activation function φ.

We can identify the following situations based on χ:

I Chaotic phase: If χ > 1, gradients explode as they backpropagate.

I Ordered phase: If χ < 1, gradients vanish.

I �Edge of chaos� (EOC): χ ≈ 1 allows deeper signal propagation.

q`(x) depends only on the norm of x . Therefore, for simplicity of notation we can assume
normalized inputs and omit argument x here.

9 / 17

Vanishing and exploding gradients

Behaviour of gradients at initialization is controlled by variable χ:[5]

χ := σ2
w

∫ [
φ
′(√

q∗v
)]2

Dv , Dv =
dv√
2π

e−v
2/2,

where q∗ = lim`→∞ q` and q` := 1
M`

∑M`
k=1

(
z`k
)2

is the pre-activation
“length” in layer `.

; χ depends on hyperparameters (σw , σb) and activation function φ.

We can identify the following situations based on χ:

I Chaotic phase: If χ > 1, gradients explode as they backpropagate.

I Ordered phase: If χ < 1, gradients vanish.

I �Edge of chaos� (EOC): χ ≈ 1 allows deeper signal propagation.

q`(x) depends only on the norm of x . Therefore, for simplicity of notation we can assume
normalized inputs and omit argument x here.

9 / 17

Vanishing and exploding gradients

Behaviour of gradients at initialization is controlled by variable χ:[5]

χ := σ2
w

∫ [
φ
′(√

q∗v
)]2

Dv , Dv =
dv√
2π

e−v
2/2,

where q∗ = lim`→∞ q` and q` := 1
M`

∑M`
k=1

(
z`k
)2

is the pre-activation
“length” in layer `.

; χ depends on hyperparameters (σw , σb) and activation function φ.

We can identify the following situations based on χ:

I Chaotic phase: If χ > 1, gradients explode as they backpropagate.

I Ordered phase: If χ < 1, gradients vanish.

I �Edge of chaos� (EOC): χ ≈ 1 allows deeper signal propagation.

q`(x) depends only on the norm of x . Therefore, for simplicity of notation we can assume
normalized inputs and omit argument x here.

9 / 17

Vanishing and exploding gradients

Behaviour of gradients at initialization is controlled by variable χ:[5]

χ := σ2
w

∫ [
φ
′(√

q∗v
)]2

Dv , Dv =
dv√
2π

e−v
2/2,

where q∗ = lim`→∞ q` and q` := 1
M`

∑M`
k=1

(
z`k
)2

is the pre-activation
“length” in layer `.

; χ depends on hyperparameters (σw , σb) and activation function φ.

We can identify the following situations based on χ:

I Chaotic phase: If χ > 1, gradients explode as they backpropagate.

I Ordered phase: If χ < 1, gradients vanish.

I �Edge of chaos� (EOC): χ ≈ 1 allows deeper signal propagation.

q`(x) depends only on the norm of x . Therefore, for simplicity of notation we can assume
normalized inputs and omit argument x here.

9 / 17

Randomness at initialization

ReLU DNNs

χ = 1 if σ2
w = 2

tanh DNNs

χ = 1 if σ2
w ≈ 3.2

; Deep networks in chaotic phase are random at initialization!

10 / 17

Randomness at initialization

ReLU DNNs

χ = 1 if σ2
w = 2

tanh DNNs

χ = 1 if σ2
w ≈ 3.2

; Deep networks in chaotic phase are random at initialization!

10 / 17

Randomness at initialization

Eθ[Θ(0)(x ,x)2]

E2
θ[Θ(0)(x ,x)]

ratio as a function of L
M :

; Exponential growth in L/M in the chaotic phase.
; Dependence on 1/M in the ordered phase.

11 / 17

Randomness at initialization

Eθ[Θ(0)(x ,x)2]

E2
θ[Θ(0)(x ,x)]

ratio as a function of L
M :

; Exponential growth in L/M in the chaotic phase.
; Dependence on 1/M in the ordered phase.

11 / 17

Change during training

Setup:

I Fully-connected tanh networks with L layers and constant width M = 256.

‖Θ(t)−Θ(0)‖F
‖Θ(0)‖F

shows if NTK changes significantly during training:

12 / 17

Change during training

Setup:

I Fully-connected ReLU networks with L layers and constant width M = 256.

‖Θ(t)−Θ(0)‖F
‖Θ(0)‖F

shows if NTK changes significantly during training:

; NTK changes significantly during training in the chaotic phase.

13 / 17

Change during training

Setup:

I Fully-connected ReLU networks with L layers and constant width M = 256.

‖Θ(t)−Θ(0)‖F
‖Θ(0)‖F

shows if NTK changes significantly during training:

; NTK changes significantly during training in the chaotic phase.

13 / 17

Generalization in the NTK regime

NTK has the following structure at initialization:

Θ∗(X) = Θ̄∗(IN + ε(X)),

Θ̄∗ = (κ̄1 − κ̄2)IN + κ̄21N1
T
N ,

where ε(X) −−−→
L→∞

0 [6] is the only data-dependent part and κ̄i , i = 1, 2 are

controlled by depth and gradients’ behaviour.

NTK behaviour depends on initialization:

I Chaotic phase: κ̄1/κ̄2 � 1 for large L ⇒ Θ∗ ≈ κ̄1IN .

I Ordered phase: κ̄1/κ̄2 ≈ 1 for large L ⇒ Θ∗ ≈ κ̄21N1
T
N .

; DNNs in the NTK regime have different dynamics in ordered and
chaotic phases!

14 / 17

Generalization in the NTK regime

NTK has the following structure at initialization:

Θ∗(X) = Θ̄∗(IN + ε(X)),

Θ̄∗ = (κ̄1 − κ̄2)IN + κ̄21N1
T
N ,

where ε(X) −−−→
L→∞

0 [6] is the only data-dependent part and κ̄i , i = 1, 2 are

controlled by depth and gradients’ behaviour.

NTK behaviour depends on initialization:

I Chaotic phase: κ̄1/κ̄2 � 1 for large L ⇒ Θ∗ ≈ κ̄1IN .

I Ordered phase: κ̄1/κ̄2 ≈ 1 for large L ⇒ Θ∗ ≈ κ̄21N1
T
N .

; DNNs in the NTK regime have different dynamics in ordered and
chaotic phases!

14 / 17

Generalization in the NTK regime

NTK has the following structure at initialization:

Θ∗(X) = Θ̄∗(IN + ε(X)),

Θ̄∗ = (κ̄1 − κ̄2)IN + κ̄21N1
T
N ,

where ε(X) −−−→
L→∞

0 [6] is the only data-dependent part and κ̄i , i = 1, 2 are

controlled by depth and gradients’ behaviour.

NTK behaviour depends on initialization:

I Chaotic phase: κ̄1/κ̄2 � 1 for large L ⇒ Θ∗ ≈ κ̄1IN .

I Ordered phase: κ̄1/κ̄2 ≈ 1 for large L ⇒ Θ∗ ≈ κ̄21N1
T
N .

; DNNs in the NTK regime have different dynamics in ordered and
chaotic phases!

14 / 17

Generalization in the NTK regime

Theorem (Seleznova&Kutyniok, 2020): Assume the NTK matrix is
well-conditioned (κ̄1/κ̄2 � 1). Then for the variance of a trained DNN
in the NTK regime we have:

Varθ,X [f (t→∞)(x̃)] ≈ (1 +
A2

N
)
(
Var (0) − Cov (0)

)
+(A− 1)2Cov (0),

where A = N
κ̄1/κ̄2+(N−1) , Var (0) := Varθ,X ,x̃ [f (0)(x̃)] is the output variance

at initialization, Cov (0) = Covθ,X ,xi 6=xj [f
(0)(xi), f

(0)(xj)] is the output
covariance on two different inputs.

If all the conditions hold, we have:

I Chaotic phase: Varθ,X [f (t→∞)(x̃)] ∝ Var (0) – large variance, which
growth with depth L.

I Ordered phase: Varθ,X [f (t→∞)(x̃)] ≈ 0 – low variance for large L.

15 / 17

Generalization in the NTK regime

Theorem (Seleznova&Kutyniok, 2020): Assume the NTK matrix is
well-conditioned (κ̄1/κ̄2 � 1). Then for the variance of a trained DNN
in the NTK regime we have:

Varθ,X [f (t→∞)(x̃)] ≈ (1 +
A2

N
)
(
Var (0) − Cov (0)

)
+(A− 1)2Cov (0),

where A = N
κ̄1/κ̄2+(N−1) , Var (0) := Varθ,X ,x̃ [f (0)(x̃)] is the output variance

at initialization, Cov (0) = Covθ,X ,xi 6=xj [f
(0)(xi), f

(0)(xj)] is the output
covariance on two different inputs.

If all the conditions hold, we have:

I Chaotic phase: Varθ,X [f (t→∞)(x̃)] ∝ Var (0) – large variance, which
growth with depth L.

I Ordered phase: Varθ,X [f (t→∞)(x̃)] ≈ 0 – low variance for large L.

15 / 17

When can we trust the results?

; Deep networks cannot be analyzed within the NTK theory!

16 / 17

When can we trust the results?

; Deep networks cannot be analyzed within the NTK theory!

16 / 17

Conclusions

I NTK theory is a powerful tool to analyze DNNs theoretically.
However, it is important to understand when it is applicable.

I Empirical NTK behaves as theoretical NTK for DNNs in the ordered
phase but not in the chaotic phase.

I Generalization of shallow networks (L/M ≈ 0) can be analyzed within
the NTK theory.

I Deep networks are hard to analyze within the NTK theory.
; New approaches are needed to analyze DNNs theoretically.

17 / 17

Conclusions

I NTK theory is a powerful tool to analyze DNNs theoretically.
However, it is important to understand when it is applicable.

I Empirical NTK behaves as theoretical NTK for DNNs in the ordered
phase but not in the chaotic phase.

I Generalization of shallow networks (L/M ≈ 0) can be analyzed within
the NTK theory.

I Deep networks are hard to analyze within the NTK theory.
; New approaches are needed to analyze DNNs theoretically.

17 / 17

Conclusions

I NTK theory is a powerful tool to analyze DNNs theoretically.
However, it is important to understand when it is applicable.

I Empirical NTK behaves as theoretical NTK for DNNs in the ordered
phase but not in the chaotic phase.

I Generalization of shallow networks (L/M ≈ 0) can be analyzed within
the NTK theory.

I Deep networks are hard to analyze within the NTK theory.
; New approaches are needed to analyze DNNs theoretically.

17 / 17

Conclusions

I NTK theory is a powerful tool to analyze DNNs theoretically.
However, it is important to understand when it is applicable.

I Empirical NTK behaves as theoretical NTK for DNNs in the ordered
phase but not in the chaotic phase.

I Generalization of shallow networks (L/M ≈ 0) can be analyzed within
the NTK theory.

I Deep networks are hard to analyze within the NTK theory.
; New approaches are needed to analyze DNNs theoretically.

17 / 17

References:

[1] Jacot et al. Neural Tangent Kernel: Convergence and Generalization in Neural
Networks. 2018
[2] Lee et al. Finite Versus Infinite Neural Networks: an Empirical Study. 2020
[3] Bai & Lee. Beyond Linearization: On Quadratic and Higher-Order
Approximation of Wide Neural Networks. 2020
[4] Hanin & Nica. Finite Depth and Width Corrections to the Neural Tangent
Kernel. 2020
[5] Schoenholz et al. Deep information propagation. 2017
[6] Xiao et al. Disentangling Trainability and Generalization in Deep Neural
Networks. 2020

Thank you for your attention!

Parametrization∗

Infinite-width limit of NTK is normally considered in NTK parametrization
(NTP) instead of standard parametrization (SP).

SP: al+1 = φ
(

Wlal + bl
)

Wl
ij ∼ N

(
0,
σ2
w

M l

)
, bl

i ∼ N (0, σ2
b)

NTP: al+1 = φ
(σw√

M l
wlx l +σbbl

)
wl
ij ∼ N

(
0, 1
)
, bl

i ∼ N (0, 1)

The change from SP to NTK amounts to: ∇W l f (t)(x)→ 1√
M l
∇W l f (t)(x)

And for constant-width networks: Θ(t)(xi , xj)
→∼ 1

M Θ(t)(xi , xj)

; The same dynamics of f (t) with proper adjustment of η.

; E[Θ(0)(x ,x)2]

E2[Θ(0)(x ,x)]
and ‖Θ

(t)−Θ(0)‖F
‖Θ(0)‖F

ratios are not affected.

