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Deep Neural Networks (DNNs)

Definition: Assume the following notation:
Number of layers L > 2.
Layers' widths My, £ =0, ..., L.
Weights W8 € RMexMe—x g > 1.
Biases bt € RME ¢ > 1.
(Non-linear) activation function ¢ : R — R.

Then a deep neural network (DNN) is a function £ : RMo — RM",

( ) WL (WL 1¢(WL 2¢(WL 3 )_i_bLfl)_’_bL.
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DNNs’ training dynamics

Consider training a DNN with parameters 6 = {(W*, be)}gzl,m,L on

dataset D = (X, Y), X € RVMo |y € RNXM by sradient flow in time t
with /oss function L:

00) = —voL(FD(X),Y)
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Consider training a DNN with parameters 6 = {(W*, be)}gzle on
dataset D = (X, Y), X € RVMo |y € RNXM by sradient flow in time t
with /oss function L:

00) = —voL(FD(X),Y)

Then the dynamics of the output function on any input X € RAVXMo jg
given by:
f'(t)()"() - ng(f)()”() . 6(1)
Challenges:
No analytical solutions for () in general.
No access to generalization error By , [L(F()(x), y)].

No access to model’s stability and robustness.

~> Neural Tangent Kernel (NTK) theory addresses these challenges in a
. special case of infinitely-wide DNNSs!
LM

3/17



Neural Tangent Kernel Theory

Consider squared loss L(Y,Y) = 2NH(Y Y)||3 and for simplicity set
M; = 1. Then the gradient flow dynamics of a DNN takes form:

90 = oL (FI(X), ¥) =~ Vo O00) - (FO(X) — v),

HO(R) = TofO(R) 00 = ~ L0, ORIV IX) - (FO(X) - ).

(1 (X,X)
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M; = 1. Then the gradient flow dynamics of a DNN takes form:

90 = oL (FI(X), ¥) =~ Vo O00) - (FO(X) — v),

HO(R) = TofO(R) 00 = ~ L0, ORIV IX) - (FO(X) - ).

(1 (X,X)

Definition: /Neural tangent kernel (NTK) of a DNN with output function
f and trainable parameters 6 is given by

@(X,',Xj) = V@f(X,')TVQf(Xj), Xiy Xj S RMO.

wowic
LM UnERSITAY
~

4/17



Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M, —» 00,/ =1,...,L — 1:[!]

5/17



Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M, —» 00,/ =1,...,L — 1:[!]
NTK is deterministic under random initialization:
0O (x;, x;) = Eg[0 (x:, )] = ©" (. %)),
¢ _ Ow ¢ ?
where Wj; = Wwij, Wi ~ /\/(0, 1),
b = onBf, Bf ~N(0,1).

5/17



Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M, —» 00,/ =1,...,L — 1:[!]
NTK is deterministic under random initialization:
0 (x;, x7) = B[00 (3, )] = © (. ),
where ij = %wg, Wfi ~ /\/(0, 1),
bf = owff, Bf ~N(0,1).
NTK stays constant during training:
0 (x;, x;) — O (. ).

5/17



Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M, —» 00,/ =1,...,L — 1:[!]

NTK is deterministic under random initialization:

0O (x;, x;) = Eg[0O(x;, x,)] = O (. %),

o
where ij = \/%Wg-, ij ~ /\/(0, 1),

b = ouff, B ~ N(0,1).
NTK stays constant during training:
0 (x;, x;) — O (. ).

Then in the infinite-width limit gradient flow dynamics with squared loss:

FO(X) = —%@*()N(,X) (FO(X) - Y)

5/17




Neural Tangent Kernel Theory

Results on infinite-width limit of NTK M, —» 00,/ =1,...,L — 1:[!]

NTK is deterministic under random initialization:

00 (x;, x7) = Eg[00 (x;, x)] = O (5. %)),

where ij = %wf}, Wfi ~ /\/(0, 1),
bf = owff, Bf ~N(0,1).
NTK stays constant during training:
0 (x;, x;) — O (. ).

Then in the infinite-width limit gradient flow dynamics with squared loss:
o 1 .
FO(X) = — 5 (X.X)- (FOX) - Y)

~» Infinitely-wide DNNs evolve as kernel regression with NTK kernel!
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Do finite DNNs behave as infinite-width ones?

Problems:

If NTK matrix is constant, no feature learning occurs.
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Problems:
If NTK matrix is constant, no feature learning occurs.
Empirical performance of NTK and finite DNNs differs./?): [l
In infinite-depth-and-width limit (L/M > 0), NTK of ReLU DNNs initialized
with 02 = 2,02 = 0 is random.*!
~» It is not clear when NTK theory explains DNNs' behavior!
Our contributions:
Study Rel U and sigmoid DNNs with various hyperparameters (o, 0, L, M).

Identify two phases in hyperparameter space where NTK regime does and
does not hold.

Study variance of DNNs output Vary p [f“*"\)(x)} under NTK theory.
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Randomness at initialization
Setup:

Fully-connected networks with L layers and constant width

Initialized as ij ~ N (0, W)’ b¢ ~ N(0,57)

Eg[00(xx)%] | i L
E31600 (x.x)] ratio measures randomness at initialization:

width networks this does not affect the results.

. We use standard parametrization instead of NTK parametrization here. However, for constant-
wowic.
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Randomness at initialization
Setup:
Fully-connected el U networks with L layers and constant width /.

2
Ow

/\/])’bllf NN(Ovﬁi)

Initialized as W ~ N (0,

Eg[90%) (x,x)°]

B[00 (x0)] ratio measures randomness at initialization:

M =200

~> Deep NNs with large o, are random at initialization!

We use standard parametrization instead of NTK parametrization here. However, for constant-
%8 width networks this does not affect the results.
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Vanishing and exploding gradients

Behaviour of gradients at initialization is controlled by variable y:[°!

=l [l Wfon ov= Se,

. / 2. . .
where ¢* = limy o0 g and ¢" =~ - " (21)" is the pre-activation

“length” in layer £.

qe(x) depends only on the norm of x. Therefore, for simplicity of notation we can assume
normalized inputs and omit argument x here.
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Vanishing and exploding gradients

Behaviour of gradients at initialization is controlled by variable y:[°!

X = nﬁ,/[o/(\/?v)]zDv, Dv = \;{;_ﬂe_‘ﬁ/z,

: N2 - .
where ¢* = limy_,o0 q¢° and ¢/ = /\//% " (21)" is the pre-activation

“length” in layer £.

~>» x depends on hyperparameters (o,,0) and activation function ¢.

We can identify the following situations based on :
Chaotic phase: If x > 1, gradients explode as they backpropagate.
Ordered phase: If x < 1, gradients vanish.
Edge of chaos> (EOC): x = 1 allows deeper signal propagation.

normalized inputs and omit argument x here.

. qe(x) depends only on the norm of x. Therefore, for simplicity of notation we can assume
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Randomness at initialization

ReLU DNNs tanh DNNs

M =200
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Randomness at initialization

ReLU DNNs tanh DNNs

M =200

~» Deep networks in chaotic phase are random at initialization!
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Randomness at initialization

Eg[0©(x,x)?] ; L.
B[00 (x0)] ratio as a function of ;:
62=1.0 6l=15 62=20 62=30
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2 — u=s2 | 2 2 2
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2! 2! 2! 2!
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Randomness at initialization

Eg[0©(x,x)?] ; L.
B[00 (x0)] ratio as a function of ;:
62=1.0 6l=15 62=20 62=30
23 — M=64 23 2 2%
— M=128
— M=256
2 — u=s2 | 2 2 2
— M=1024
2! 2! 2! 2!
20 20 20 20
0.0 0.2 0.4 0.0 0.2| 0.4 0.0 02 04 0.0 0.2 0.4
LM LM LM LM

~> Exponential growth in L/M in the chaotic phase.
~> Dependence on 1/M in the ordered phase.
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Change during training

Setup:
Fully-connected tanh networks with L layers and constant width M = 256.
% shows if NTK changes significantly during training:
L=3
I 20
.-
e
56
58

-
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35

2 2
oy, Oy
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Change during training
Setup:

" Fully-connected Rel U networks with L layers and constant width M = 256.

(1 _e0 . T . ..
% shows if NTK changes significantly during training:

L=3 L=10
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I
i III -
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Setup:
Fully-connected Rel U networks with L layers and constant width M = 256.
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W shows if NTK changes significantly during training:
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Generalization in the NTK regime

NTK has the following structure at initialization:
©*(X) = ©*(In + €(X)),
0" = (i1 o)y + Folydy,
where €(X) L—> 0 (% is the only data-dependent part and &;,i = 1,2 are

— 00
controlled by depth and gradients’ behaviour.
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Generalization in the NTK regime

NTK has the following structure at initialization:
©*(X) = ©*(In + €(X)),
0" = (i1 o)y + Folydy,
where €(X) L—> 0 (% is the only data-dependent part and &;,i = 1,2 are

— 00
controlled by depth and gradients’ behaviour.

NTK behaviour depends on initialization:
Chaotic phase: R1/Rp > 1 for large L = ©* ~ R1lly.
Ordered phase: R1/Rp =~ 1 for large L = ©* ~ RQILNILL.

~» DNNSs in the NTK regime have different dynamics in ordered and
chaotic phases!




Generalization in the NTK regime

Theorem (Seleznova&Kutyniok, 2020): Assume the NTK matrix is

well-conditioned (K1 /R2 > 1). Then for the variance of a trained DNN
in the NTK regime we have:

A2
Varg x[F7°)(%)] ~ (1 + W)(Varw) _ Cov(0)>

+(A —1)?Cov(®,
where A = m Var(®) := Vary x £[f(O)(%)] is the output variance

at initialization, Cov(®) = Coveyxw;,,ng[f(o)(x,-), f(O(x;)] is the output
covariance on two different inputs.
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Generalization in the NTK regime

Theorem (Seleznova&Kutyniok, 2020): Assume the NTK matrix is
well-conditioned (K1/k2 > 1). Then for the
we have:

A2
Varg x[F7°)(%)] ~ (1 + W)(Var(o) _ Cov(0)>
+(A—1)2Cov(®,

where A = m Var(®) := Vary x £[f(O)(%)] is the output variance

at initialization, Cov(®) = Cove,x7xi¢)<j[f(0)(x,-), f(O(x;)] is the output
covariance on two different inputs.

If all the conditions hold, we have:

Varg7x[f(tﬁoo)(>”<)] o Var(® — large variance, which
growth with depth L.

Varg’x[f(t*‘x’)(f()] ~ 0 — low variance for large L.

Lwowic
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When can we trust the results?

L
M

- NTK regime holds

.~ NTKwell-conditioned
at initialization

o=
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When can we trust the results?

L
M

- NTK regime holds

.~ NTKwell-conditioned
at initialization

x=1 x

~» Deep networks cannot be analyzed within the NTK theory!

o=
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Conclusions

NTK theory is a powerful tool to analyze DNNs theoretically.
However, it is important to understand when it is applicable.
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Conclusions

NTK theory is a powerful tool to analyze DNNs theoretically.
However, it is important to understand when it is applicable.

behaves as theoretical NTK for DNNs in the ordered
phase but not in the chaotic phase.

Generalization of (L/M =~ 0) can be analyzed within
the NTK theory.

are hard to analyze within the NTK theory.
~> New approaches are needed to analyze DNNs theoretically.
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Thank you for your attention!



Parametrization®*

Infinite-width limit of NTK is normally considered in N'TK parametrization
(NTP) instead of standard parametrization (SP).

sPr ot =g(Wal+b) TR g ¢(§%W’x’ +ob')

2
Wi~ N(0, ), b ~ N (0, 07) wj; ~ N(0,1), b} ~ N(0,1)

The change from SP to NTK amounts to: Vi f()(x) — \/LMﬁVW/f(t)(x)
And for constant-width networks: ©(*)(x;, ;) = 08 (x;, x))

~> The same dynamics of f\t) with proper adjustment of 1.

™ B260) (x )] and I ratios are not affected.



