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Pandemic: affecting a substantial number of people

Covid-19 causes millions of deaths.
Covid-19 significantly reduces economic growth.
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Optimal Policies for a Pandemic

Figure: Two tools to fight with a pandemic.
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A multi-region SEIR model

Susceptible, Exposed, Infectious, and Removed in a pandemic,
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Each planner n seeks to minimize its region’s cost within a period [0,T ]:
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Nash equilibrium

Definition
A Nash equilibrium is a tuple (`∗,h∗) = (`1,∗,h1,∗, . . . , `N,∗,hN,∗) ∈ AN

such that

∀n ∈ N , and (`n,hn) ∈ A, Jn(`∗,h∗) ≤ Jn((`−n,∗, `n), (h−n,∗,hn)),
(2)

where `−n,∗, h−n,∗ represent strategies of players other than the n-th
one:

`−n,∗ := [`1,∗, . . . , `n−1,∗, `n+1,∗, . . . , `N,∗],

h−n,∗ := [h1,∗, . . . ,hn−1,∗,hn+1,∗, . . . ,hN,∗], (3)

A denotes the set of admissible strategies for each player and AN is the
produce of N copies of A.
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Derivation of HJB equations

We derive below the Hamilton-Jacobi-Bellman (HJB) equations
characterizing the Markovian Nash equilibrium.

Xt ≡ [St ,Et , It ]T ≡ [S1
t , · · · ,SN

t ,E
1
t , · · · ,EN

t , I
1
t , · · · , IN

t ]T ∈ R3N

The dynamics of Xt reads:

dXt = b(t ,Xt , `(t ,Xt ),h(t ,Xt )) dt + Σ(Xt ) dWt , (4)

Each player n aims to minimize the expected running cost

E

[∫ T

0
f n(t ,Xt , `

n(t ,Xt ),hn(t ,Xt )) dt

]
. (5)

Define the value function of player n by

V n(t ,x) = inf
(`n,hn)∈A

E

[∫ T

t
f n(s,Xs, `

n(s,Xs),hn(s,Xs)) ds|Xt = x

]
.

(6)
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Derivation of HJB equations

By dynamic programming, it solves the following HJB system∂tV n + inf
(`n,hn)∈[0,1]2

Hn(t ,x , (`,h)(t ,x),∇xV n) +
1
2

Tr(Σ(x)THessxV nΣ(x)) = 0,

V n(T ,x) = 0, n ∈ N ,
(7)

where Hn is the usual Hamiltonian defined by

Hn(t ,x , `,h,p) = b(t ,x , `,h) · p + f n(t ,x , `n,hn), (8)

Curse of dimensionality: N-coupled 3N + 1 dimensional nonlinear equations

Deep fictitious play (Han-Hu ’20): Deep learning + fictitious play

Enhanced deep fictitious play: break bottlenecks of time complexity and
memory complexity.
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Enhanced deep fictitious play algorithm

To solve such a high-dimensional stochastic game(α = (l ,h)):
Initialize V n,0 and αn,0,n ∈ N by 2N neural networks.
At the beginning of stage m + 1, value functions Ṽ m and best
responses α̃m at stage m is observable by all players.

During stage m + 1, fictitious play
decoupling−−−−−−−→ N optimization

problems→ solved simultaneously→ Ṽ m+1, α̃m+1

usually not analytically tractable, solve numerically
use deep BSDE method (cf. Han-Jentzen-E, CMS(’17), PNAS(’18))

Repeat α̃m+1 converges→ a Nash equilibrium.

Remark: On top of deep fictitious play, N additional neural networks α̃
are introduced to approximate policies, which is cheaper to evaluate.

DFP : α̃m+1(Ṽ 1, ..., Ṽ m)→ EDFP : neural networks α̃m+1
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From high dimensions to low dimensions

HJB equation decoupled by fictitious play to N separate equations

∂tV n +
1
2

Tr(Σ(x)THessxV nΣ(x)) + µn(t ,x ; `−n,h−n) · ∇xV n

+ gn(t ,x ,Σ(x)T∇xV n; `−n,h−n) = 0,
(9)

with some functions µn and gn.

Figure: Decoupling N coupled equations to N separate equations to be
solved in parallel.
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Enhanced deep fictitious play

Figure: Illustration of one stage of enhanced deep fictitious play. BSDE:
Backward stochastic differential equations. VP: variational problem.
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BSDE

The solution is then approximated by solving the equivalent BSDE
(X n

t ,Y
n
t ,Z

n
t ) ∈ R3N × R× R2N :

X n
t = x0 +

∫ t

0
µn(s,X n

s ; (`−n,h−n)(s,X n
s )) ds +

∫ t

0
Σ(X n

s ) dWs,

Y n
t =

∫ T

t
gn(s,X n

s ,Z
n
s ; (`−n,h−n)(s,X n

s )) ds −
∫ T

t
(Z n

s )T dWs, (10)

in the sense of

Y n
t = V n(t ,X n

t ) and Z n
t = Σ(X n

t )T∇xV n(t ,X n
t ). (11)
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Variational problem

The BSDE is solved by a variational problem,

inf
Y n

0 ,α̃
n,{Z n

t }0≤t≤T
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n
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s ),Z n
s ),

(12)

Repeat updating α̃n,π until convergence.
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Numerical Discretization to BSDE

inf
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Repeat updating α̃n,π until convergence.
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Improvement of time and memory complexity

DFP EDFP
Memory complexity O(m) O(1)

Time complexity O(m2) O(m)

Table: Memory and time cost of Deep Fictitious Play (DFP) and Enhanced
Deep Fictitious Play (EDFP) in solving each equation.
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Numerical Results

Case studies on optimal policies of COVID-19.
Stochastic game among 3 states, NY, NJ and PA.
Simulation from 03/15/2020 to 09/15/2020, vaccination was not
available (v = 0).
Simulations on how lockdown policies influence the pandemic in
different settings.
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Dependence of policies on a

Figure: Optimal policies `(t) with different choice of a (planners’ view on the
death of human beings) for three states: New York (blue), New Jersey
(orange) and Pennsylvania (green), lockdown efficiency θ = 0.9.
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Dependence of policies on θ

Figure: Comparison of optimal policies for three states (NY = blue, NJ =
orange, PA = green) and their susceptibles under different θ (lockdown
efficiency, residents’ willingness to comply with the policy).
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Summary

Build a multi-region SEIR model for a pandemic to find optimal
policies.
Propose enhanced deep fictitious play algorithm to solve the high
dimensional problem.
Case studies on COVID-19 show the importance of θ (planners’
view on the death of human beings) and a (residents’ willingness
to comply with the policy).
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