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Theme

Distribution learning

Understand generalization ability

Reconcile with memorization and curse of dimensionality

Simple setting: Bias-potential model



Challenges

Notation:
Target distribution Q∗ and empirical distribution Q

(n)
∗ = 1

n

∑n
i=1 δxi

1. Curse of dimensionality

W2(Q∗, Q
(n)
∗ ) = n−O(1/d)

Worst case lower bound for all models

2. Memorization
lim
t→∞

Qt → Q
(n)
∗

Model becomes trivial



Need a dimension-independent α

W2(Q∗, Qt) or KL(Q∗‖Qt) = O(n−α)

Figure 1: 1 Between universal approximation and strong regularity

1Source: the CelebA dataset.



Solution



Framework

Continuous perspective

Figure 2: Supervised learning [E, Ma & Wu, 2020]



Distribution learning



1. Distribution representation:
Bias-potential model

Q =
1

Z
e−V P, Z = EP [e−V ]

2. Training loss:
Relative entropy

KL(Q∗‖Q) = EQ∗ [V ] + logEP [e−V ] + constant



3. Function representation:

I 2-layer network (integral transform)

V (x) = Eρ(a,w,b)[a σ(w · x+ b)]

I Residual network (flow)

V (x0) = l(x1), ẋt = Eρt(a,w,b)[a σ(w · x+ b)]

I Random feature function (or kernel function)

V (x) = Eρ0(w,b)[a(w, b)σ(w · x+ b)]

RKHS norm
‖V ‖H := ‖a‖L2(ρ0)

Rademacher complexity

Radn({‖V ‖H ≤ R}) ≤ 2R

√
2 log 2d√
n



4. Training rule
Parameter at and distribution Qt
Gradient flow

d

dt
at = −

δL

δa
=

∫
σ(w · x+ b) d(Qt −Q∗)(x)

L(a) = EQ∗ [V ] + logEP [e−V ]

Empirical loss

L(n)(a) = E
Q

(n)
∗

[V ] + logEP [e−V ]

Empirical training trajectory: a
(n)
t and Q

(n)
t .



Universal Approximation

Proposition
(Under technical conditions), if V has universal approximation property among
continuous functions, then the family

Q =
{ 1

Z
e−V P

∣∣ V ∈ V}
satisfies universal approximation among probability distributions, under
KL-divergence, TV norm and Wasserstein metric.



Generalization Error

Theorem
(Under technical conditions), suppose the target distribution is given by
Q∗ ∝ e−V∗P . Then, with probability 1− δ,

KL(Q∗‖Q(n)
t ) ≤ ‖V∗ − V0‖

2
H

2t
+

8
√
2 log 2d+ 2

√
2 log 2/δ√

n
t

Generalization error ≤ Training error + Generalization gap

Corollary
Early-stopping at T � ‖V∗ − V0‖H

(
n

log d

)1/4
achieves error

KL(Q∗‖Q(n)
t ) .

‖V∗ − V0‖H(log d)
1/4

n1/4



Mechanism for Generalization

The sampling gap Q∗ −Q(n)
∗ is hidden by function representation

δ(L− L(n))

δa
=

∫
δ(L− L(n))

δV

δV

δa
dx

= 〈Q∗ −Q(n)
∗ , σ(w · x+ b)〉

So the trajectories remain close

‖at − a(n)t ‖L2(ρ0) .
t√
n





Memorization

Proposition
If Q

(n)
t converges weakly to some limit, then the limit must be Q

(n)
∗ . The

generalization error always blows-up

lim
t→∞

KL(Q∗‖Q(n)
t ) = lim

t→∞
‖a(n)t ‖L2(ρ0) =∞

Memorization seems inevitable.



Figure 3: Left: Early stopping. Right: Memorization. (Training accelerated by Adam)



Difference from Supervised Learning

Regression with implicit regularization:

min
f∈H
‖f∗ − f‖2L2(P (n)), P

(n) =
1

n

n∑
i=1

δxi

Generalization error bound [E, Ma, Wu, 2019]

‖f∗ − f (n)t ‖2L2(P ) ≤
‖f∗‖2H
2t

+
(1 +

√
log 1/δ)‖f∗‖H√

n

Early stopping achieves error O(n−1/2).

Memorization vs interpolation:

Regression: ‖a(n)t ‖L2(ρ0) = O(‖a∗‖)
Bias-potential: ‖a(n)t ‖ = O(‖a∗‖+ t/

√
n)

Analogous to regression with noise.



Contribution

I Reconcile generalization and memorization:
Time scales and early stopping

I Mechanism of generalization:
Complexity of function representation overcomes the curse of

dimensionality

I Implication to distribution learning:
How function representation influences training
Our new paper “Generalization Error of GAN from the Discriminator’s

Perspective” [arXiv 2107.03633]
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