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Theme

Distribution learning
Understand generalization ability
Reconcile with memorization and curse of dimensionality

Simple setting: Bias-potential model



Challenges

Notation: -
Target distribution Q. and empirical distribution Q. = %E?:l Ox;
1. Curse of dimensionality
Wa(Q., Q) = n~0/9
Worst case lower bound for all models

2. Memorization
lim Q; — Q™
t—00

Model becomes trivial



Need a dimension-independent «

Wa(Qx, Q) or KL(Q.[|Q:) = O(n™")

Figure 1: ! Between universal approximation and strong regularity

1Source: the CelebA dataset.
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Framework

Continuous perspective
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Figure 2: Supervised learning [E, Ma & Wu, 2020]
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1. Distribution representation:
Bias-potential model

1
Q= Ze*VP, Z =Eple”"]

2. Training loss:
Relative entropy

KL(Q.]|Q) = Eq,[V] +logEple™ V] + constant



3. Function representation:

» 2-layer network (integral transform)
V(x) = Ep(a,wp)la o(w-x+Db)]
> Residual network (flow)
Vi(xo) =l(x1), *¢=E, (qwpla o(w-x+Db)]
» Random feature function (or kernel function)
V(x) = E,o(w.p) [a(w,b)o(w - x + b)]
RKHS norm

VI3 = llallL2 (o)

Rademacher complexity

v2log2d

Radn({[|V % < R}) <2R Tn



4. Training rule
Parameter a; and distribution Q)
Gradient flow

%at = 7% = /O’(W X +b) d(Qr — Qx)(x)

L(a) =Eq,[V] +1ogEp[e™"]
Empirical loss

L™ (a) = Egen [V] +log Eple™"]

Empirical training trajectory: aE") and QE").



Universal Approximation

Proposition
(Under technical conditions), if V has universal approximation property among
continuous functions, then the family

0={5c"P|VeV)

satisfies universal approximation among probability distributions, under
KL-divergence, TV norm and Wasserstein metric.



Generalization Error

Theorem

(Under technical conditions), suppose the target distribution is given by
Q. o< e~V=P. Then, with probability 1 — §,

IV ~Voll3, , 8vZTog2d + 2/210g2/5
2 NG

Generalization error < Training error 4 Generalization gap

KLQ. Q™) <

Corollary
Early-stopping at T =< ||V. — Vol (@) Y4 achieves error

1/4
< Vi — Vol[#(log d)

1/4
’I’L/

KLQ. Q)



Mechanism for Generalization

The sampling gap Q. — kan) is hidden by function representation

§(L—LM) / 5(L—L(”))6ld
sa 5V ea ™
=(Q. — Q" o(w - x +b))

So the trajectories remain close

lae — al™ || L2 (o) S

t
NG



ap

Norm =~ Time/\/n



Memorization

Proposition
If an) converges weakly to some limit, then the limit must be Q&n). The
generalization error always blows-up

. (n)y _ 1: (n) _
tlg{.lo KL(Q.|Q;) = tlgrolo llas || L2(po) = 00

Memorization seems inevitable.



Iteration 160, Error 0.0017

Iteration 1000000, Error 16.1394
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Figure 3: Left: Early stopping. Right: Memorization. (Training accelerated by Adam)
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Difference from Supervised Learning

Regression with implicit regularization:
n

1
; _ fl2 (n) — = E
?&I_Ll Hf* f||L2(p(n))a P = n 5xi

Generalization error bound [E, Ma, Wu, 2019]

. LB, (R T/3) Il
1. = 5 ey < Lol o BB

Early stopping achieves error O(n~1/2).

Memorization vs interpolation:
Regression: [|a{™ || 2(p,) = O(/|a|)
Bias-potential: [|a\™| = O(||a.|| + t/v/n)

Analogous to regression with noise.



Contribution

» Reconcile generalization and memorization:
Time scales and early stopping

» Mechanism of generalization:
Complexity of function representation overcomes the curse of
dimensionality

» Implication to distribution learning:
How function representation influences training
Our new paper “Generalization Error of GAN from the Discriminator’s
Perspective” [arXiv 2107.03633]
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