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Motivation

Multivariate function recovery

Approximate f : U → V, a Hilbert-valued function, from its evaluations at m ∈ N sample points
y1, . . . , ym ∈ U :

di = f (yi ) + ni ∈ Vh, i = 1, . . . ,m.

Input
y ∈ Rd → Blackbox

model

→
Output
f (y) ∈ V
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Main motivation

Parametric PDE

A parametric PDE takes the form
Ly [u(·, y)] = 0

with suitable boundary conditions.

Parametric variables y ∈ U .

Physical variables x ∈ Ω.

Ly is an operator depending on the parameters y (e.g. differentiation wrt x).

u(·, y) is an element of some Banach or Hilbert space V.

Example:
−∇x · (a(x , y)∇xu(x , y)) = g(x) in Ω,

and BC.
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Main challenges

1 High-dimensional models: Often d � 1 or even d =∞.

2 The space V is infinite dimensional (Hilbert or Banach):
Needs discretization Vh over Ω  induces a discretization error.

3 Corrupted data (unknown errors):
Modelling errors, numerical error, random noise in the measurements.

4 Generating data is expensive:
Example: generating multiple solutions of a particular PDE using a black-box numerical PDE
solver.
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Holomorphy assumption

For d ≥ 1, let ρ ∈ Rd with ρ > 1. The Bernstein polyellipse of polyradius ρ is

Eρ = Eρ1 × Eρ2 × · · · Eρd ⊂ Cd .

where

Eρ = {1

2
(z + z−1) : z ∈ C, 1 ≤ |z | ≤ ρ} ⊂ C

Assumption

The function f has a holomorphic extension from [−1, 1]d to some Bernstein polyellipse Eρ.

Many parametric DEs provably satisfy this assumption, including elliptic diffusion equations,
parametric IVPs,...

Cohen, DeVore, Schwab (2010, 2011), Chkifa, Cohen, Schwab (2015), Hoang, Schwab (2013, 2014)
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Deep Neural Network (DNN) Φ : Rd → RK

z(1) = σ
(
W (1)y + b(1)

)
,

z(`) = σ
(
W (`)z(`−1) + b(`)

)
, ` = 2, . . . , L− 1

Φ(y) = W (L)z(L−1) + b(L).

W (`) ∈ RN`×N`−1 are the weights.

b(`) ∈ RN` are the biases.

σ is the activation function, e.g., σ(t) = max{0, t} (ReLU).
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Why DNN?

DNNs are capable of efficiently approximating functions from a wide variety of classes:

Smooth functions, piecewise smooth functons, Hk functions,. . .

[DeVore, Hanin, Petrova (2020)], [Elbrächter, Perekrestenko, Grohs, Bölcskei (2019)], and references therein.

There are existence theorems about DNNs approximating holomorphic functions.

These DNNs can achieve the same error bound as the best s-term polynomial approximation.

Specifically, they can obtain an error proportional to exp
(
−γs1/d

)
, where γ depends on the

region of holomorphy.

The size and depth of these DNNs are bounded in terms of s and d .

[Opschoor, Schwab, Zech (2019)], [Daws, Webster (2020)], [Adcock, Brugiapaglia, Dexter, Moraga (2021)].
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Input

Each di is uniquely represented as

di = f (yi ) + ni =
K∑

k=1

di,kϕk ∈ Vh, i = 1, . . . ,m.

� The values {(yi , di )}mi=1 are the input.

Output

Let {Ψi}Ni=1 be a basis for PΛ, where N = |Λ|. Then we may write

f̂Λ,h : y 7→
N∑
i=1

(
K∑

k=1

ĉi,kϕk

)
Ψi (y),

where ĉi,k ∈ R.

� The values (ĉi,k)N,Kn,k=1 are the output.
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Practical DNN existence theorem for Hilbert-valued functions:

Let f : U → V be holomorphic in a suitable region, and m̃ = cm/(log3(m) log(d)). Then there exists

1 a class of ReLU DNNs,

2 a loss function (regularized `2-loss),

3 a choice of m sample points y1, . . . , ym,

such that any DNN Φ trained from the input {(yi , di )}mi=1 gives an approximation fΦ satisfying

‖f − fΦ‖L2
%(U ;V) . (E1 + E2 + E3) ,

E1 = exp
(
−γm̃1/(2d)

)
, E2 =

(
1

m

m∑
i=1

‖ni‖2
V

)1/2

, E3 = ‖f − Ph(f )‖L∞(U ;V).

E1 is the approximation error: quantifies how well f is approximated by a DNN in terms of m̃.

E2 is the measurement error: quantifies the error in the pointwise evaluations of f at the points yi .
E3 is the discretization error: since we work with Vh instead of V.

Adcock, Dexter, Brugiapaglia and Moraga, Deep Neural Networks Are Effective At Learning High-Dimensional

Hilbert-Valued Functions From Limited Data. MSML, volume 145, pages 1–36. (2021)
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Orthogonal polynomials

U = [−1, 1]d the unit hypercube.

d%(y) = 2−d dy be the uniform measure on U .

{Ψν}ν∈Nd
0

be the tensor-product, orthonormal Legendre polynomial basis of L2
%(U).

Let L2
%(U ;V) the Lebesgue-Bochner space of Hilbert-valued functions f : U → V.

Polynomial expansion: if f ∈ L2
%(U ;V), then

f =
∑
ν∈Nd

0

cνΨν , cν =

∫
U
f (y)Ψν(y)d%(y) ∈ V.

Sequence in `p(Λ;V) : For 1 ≤ p <∞ and c ∈ `p(Λ;V), define

‖c‖pV,p =
∑
ν∈Λ

‖cν‖pV .
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Polynomial approximation as a compressed sensing problem

Let Λ be a finite index set with |Λ| = N. Define the normalized measurement matrix

A =

(
Ψνj (yi )√

m

)m,N

i,j=1

∈ Rm×N ,

and the normalized measurement and error vectors

b =
1√
m

(f (yi ) + ni )
m
i=1 ∈ V

m
h , and e =

1√
m

(ni )
m
i=1 ∈ Vm.

Hence, the recovery of the polynomial coefficients cΛ = (cν)ν∈Λ of f is equivalent to solving the noisy
linear system

AcΛ + e + e′ = b,
where

e′ =
1√
m

(f (yi )− fΛ(yi ))mi=1 .

Consider the Square Root LASSO problem

min
z∈VN

h

λ‖z‖V,1 + ‖Az − b‖V,2.
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Emulation as a DNN training problem

Key insight: approximating polynomials as DNNs

For any δ > 0, there exists a DNN Γ : Rd → R|Λ| (of size and depth depending on d , |Λ| and δ) such
that

‖Ψν −Ψν,δ‖L∞(U) ≤ δ,

where Γ(y) = (Ψν,δ(y))ν∈Λ.

[Opschoor, Schwab, Zech (2019)], [Daws, Webster (2020)], [Adcock, Brugiapaglia, Dexter, Moraga (2021)].

We can use this result to emulate the polynomial approximation problem as a DNN training problem:

A =

(
Ψνj (yi )√

m

)m,N

i,j=1

∈ Rm×N  A′ =

(
Ψνj ,δ(yi )√

m

)m,N

i,j=1

∈ Rm×N

Carefully balancing the error due to this approximation and accounting for all other sources of errors
leads to the main result.
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Parametric PDE approximation

A practical example:

Ω = (0, 1)2 physical domain with discretization Ωh.

U = [−1, 1]d parametric domain with uniform probability measure.

We seek a function u : Ω× U → R satisfying

−∇x · (a(x , y)∇xu(x , y)) = g(x) in Ω, and BC.

Compute: Approximation uΦ,h : U → Vh with a DNN Φ : Rd → RK , of the form

uΦ,h(x , y) =
K∑

k=1

(Φ(y))k ϕk(x).

Note: we do not implement the training strategy from the theorem.
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Training: Given data {(yi , di )}mi=1, di = (ck(yi ))Kk=1 from a fixed FE discretization, minimize the loss
function

MSE(y) :=
1

m

m∑
i=1

K∑
k=1

(ck(yi )− (Φ(yi ))k)2,

or

MVNSE(y) :=
1

m

m∑
i=1

‖uh(yi )− uΦ,h(yi )‖2
V .

Testing: We compare the testing error in L2
%(U ; L2(Ω)) and L2

%(U ;H1
0 (Ω)) norm.

We use deterministic high-order sparse grid stochastic collocation method.
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Effective architectures and loss functions

DNN architectures with MVNSE underperform identical architectures trained with the MSE.

Big difference between in the L2(Ω)-norm (right) for tanh, ReLU and Leaky-ReLU 5× 50 DNNs.
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Visualization comparative

Prediction for uh(x , y) from a tanh 5× 50 DNN at y = [0.995, 0]t

Early training: after 2 epochs of Adam (MSE 6.4255).

At the end of the training: after 2045 epochs (MSE 4.879 · 10−7).
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Comparison with Simultaneous Compressed Sensing (SCS)

Elliptic PDE with d=30 dimensional log-affine parametric diffusion.
DNNs can outperform state-of-art polynomial-based CS methods.
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A mixed formulation

Define K = diag([a1, a2]) and

−∇ · (K(x , y)∇u(x , y)) = f (x , y) x ∈ Ω, y ∈ U ,
u(x , y) = h(x , y) x ∈ ΓD , y ∈ U ,

∇u(x , y) · n = 0 x ∈ ΓN , y ∈ U .

Given y ∈ U , find (u(y),σ(y)) ∈ [L2(Ω)]×HΓN (div ; Ω) such that

〈σ, τ 〉L2(Ω) + 〈u,∇ · τ 〉L2(Ω) =〈τ · n, h〉ΓD
〈∇K · σ, v〉L2(Ω) + 〈Kv ,∇ · σ〉L2(Ω) =−〈f , v〉L2(Ω)

Here σ(y) = ∇u(y) ∈ HΓN (div ; Ω).
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Parametric PDE with mixed B.C. example

Testing errors for u are substantially smaller than those for its gradient ∇u.
DNNs can be used as well to approximate parametric PDEs with mixed boundary conditions.
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Conclusions

Deep learning is capable of approximating Hilbert-valued functions from limited data.

There exists a DNN architecture and training procedure that performs as well as current
best-in-class schemes.

DNN can be used to approximate mixed formulations.

Using the MSE loss function leads to better and faster approximations.

In practice DNNs can outperform or match best current methods.
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