00000	0000	00	0000	0000000000

Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data

Sebastian Moraga¹ Ben Adock¹ Simone Brugiapaglia², Nick Dexter¹ smoragas@sfu.ca sites.google.com/view/sebanthalas

²Concordia University. Canada

July 20, 2021

Motivation ●0000	Deep learning approach 0000		Numerical results 0000000000
Outline			

- 2 Deep learning approach
- 3 Main result
- 4 Proof strategy

Motivation	Deep learning approach	Main result	Proof strategy	Numerical results
O●OOO	0000	00	0000	
Motivation				

Multivariate function recovery

Approximate $f : U \to V$, a Hilbert-valued function, from its evaluations at $m \in \mathbb{N}$ sample points $y_1, \ldots, y_m \in U$:

 $d_i = f(\mathbf{y}_i) + n_i \in \mathcal{V}_h, \qquad i = 1, \ldots, m.$

Motivation 00●00	Deep learning approach 0000		Numerical results

Main motivation

Parametric PDE

A parametric PDE takes the form

$$\mathcal{L}_{\boldsymbol{y}}[u(\cdot, \boldsymbol{y})] = 0$$

with suitable boundary conditions.

- Parametric variables $\boldsymbol{y} \in \mathcal{U}$.
- Physical variables $x \in \Omega$.
- \mathcal{L}_y is an operator depending on the parameters y (e.g. differentiation wrt x).
- $u(\cdot, \mathbf{y})$ is an element of some Banach or Hilbert space \mathcal{V} .

Example:

$$-\nabla_{\mathbf{x}} \cdot (\mathbf{a}(\mathbf{x}, \mathbf{y}) \nabla_{\mathbf{x}} \mathbf{u}(\mathbf{x}, \mathbf{y})) = \mathbf{g}(\mathbf{x}) \quad \text{in} \quad \Omega,$$

and BC.

Motivation	Deep learning approach	Main result	Proof strategy	Numerical results
000●0	0000	00	0000	
Main challenges				

- **I** High-dimensional models: Often $d \gg 1$ or even $d = \infty$.
- **2** The space \mathcal{V} is infinite dimensional (Hilbert or Banach): Needs discretization \mathcal{V}_h over $\Omega \rightsquigarrow$ induces a discretization error.
- **B** Corrupted data (unknown errors):

Modelling errors, numerical error, random noise in the measurements.

4 Generating data is expensive:

Example: generating multiple solutions of a particular PDE using a **black-box** numerical PDE solver.

Motivation 0000●	Deep learning approach 0000		Numerical results

Holomorphy assumption

For $d\geq 1$, let $oldsymbol{
ho}\in\mathbb{R}^d$ with $oldsymbol{
ho}>1.$ The Bernstein polyellipse of polyradius $oldsymbol{
ho}$ is

$$\mathcal{E}_{\boldsymbol{
ho}} = \mathcal{E}_{\rho_1} \times \mathcal{E}_{\rho_2} \times \cdots \mathcal{E}_{\rho_d} \subset \mathbb{C}^d.$$

where

$$\mathcal{E}_
ho=\{rac{1}{2}(z+z^{-1}):z\in\mathbb{C},1\leq|z|\leq
ho\}\subset\mathbb{C}$$

Assumption

The function f has a holomorphic extension from $[-1,1]^d$ to some Bernstein polyellipse \mathcal{E}_{ρ} .

 Many parametric DEs provably satisfy this assumption, including elliptic diffusion equations, parametric IVPs,...

Cohen, DeVore, Schwab (2010, 2011), Chkifa, Cohen, Schwab (2015), Hoang, Schwab (2013, 2014)

Motivation 00000	Deep learning approach ●000	Main result 00	Proof strategy 0000	Numerical results
Outline				

2 Deep learning approach

3 Main result

4 Proof strategy

	Deep learning approach			
00000	0000	00	0000	0000000000

Deep Neural Network (DNN) $\Phi : \mathbb{R}^d \to \mathbb{R}^K$

$$\begin{aligned} \boldsymbol{z}^{(1)} &= \sigma \left(\boldsymbol{W}^{(1)} \boldsymbol{y} + \boldsymbol{b}^{(1)} \right), \\ \boldsymbol{z}^{(\ell)} &= \sigma \left(\boldsymbol{W}^{(\ell)} \boldsymbol{z}^{(\ell-1)} + \boldsymbol{b}^{(\ell)} \right), \qquad \ell = 2, \dots, L-1 \\ \Phi(\boldsymbol{y}) &= \boldsymbol{W}^{(L)} \boldsymbol{z}^{(L-1)} + \boldsymbol{b}^{(L)}. \end{aligned}$$

- $\boldsymbol{W}^{(\ell)} \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ are the weights.
- **\boldsymbol{b}^{(\ell)} \in \mathbb{R}^{N_{\ell}} are the biases**.
- σ is the activation function, e.g., $\sigma(t) = \max\{0, t\}$ (ReLU).

Motivation 00000	Deep learning approach ○○●○	Main result 00	Proof strategy 0000	Numerical results
Why DNN?				

DNNs are capable of efficiently approximating functions from a wide variety of classes:

• Smooth functions, piecewise smooth functions, H^k functions,...

[DeVore, Hanin, Petrova (2020)], [Elbrächter, Perekrestenko, Grohs, Bölcskei (2019)], and references therein.

- There are existence theorems about DNNs approximating holomorphic functions.
- These DNNs can achieve the same error bound as the best *s*-term polynomial approximation.
- Specifically, they can obtain an error proportional to $\exp\left(-\gamma s^{1/d}\right)$, where γ depends on the region of holomorphy.
- The size and depth of these DNNs are bounded in terms of *s* and *d*.

[Opschoor, Schwab, Zech (2019)], [Daws, Webster (2020)], [Adcock, Brugiapaglia, Dexter, Moraga (2021)].

	Deep learning approach			
00000	0000	00	0000	0000000000

Input

Each *d_i* is uniquely represented as

$$d_i = f(\mathbf{y}_i) + n_i = \sum_{k=1}^{K} d_{i,k} \varphi_k \in \mathcal{V}_h, \qquad i = 1, \dots, m.$$

• The values $\{(\mathbf{y}_i, d_i)\}_{i=1}^m$ are the *input*.

Output

• Let $\{\Psi_i\}_{i=1}^N$ be a basis for \mathcal{P}_{Λ} , where $N = |\Lambda|$. Then we may write

$$\hat{f}_{\Lambda,h}: oldsymbol{y} \mapsto \sum_{i=1}^N \left(\sum_{k=1}^K \hat{c}_{i,k} arphi_k
ight) \Psi_i(oldsymbol{y}),$$

where $\hat{c}_{i,k} \in \mathbb{R}$. The values $(\hat{c}_{i,k})_{n,k=1}^{N,K}$ are the *output*.

Motivation	Deep learning approach	Main result	Proof strategy	Numerical results
00000	0000	●O	0000	
Outline				

2 Deep learning approach

3 Main result

4 Proof strategy

Deep learning approach	Main result	Proof strategy	
	00		

Practical DNN existence theorem for Hilbert-valued functions:

Let $f : \mathcal{U} \to \mathcal{V}$ be holomorphic in a suitable region, and $\widetilde{m} = cm/(\log^3(m)\log(d))$. Then there exists \blacksquare a class of ReLU DNNs.

2 a loss function (regularized ℓ^2 -loss),

3 a choice of m sample points y_1, \ldots, y_m ,

such that any DNN Φ trained from the input $\{(\mathbf{y}_i, d_i)\}_{i=1}^m$ gives an approximation f_{Φ} satisfying

 $\|f-f_{\Phi}\|_{L^2_{\varrho}(\mathcal{U};\mathcal{V})} \lesssim (E_1+E_2+E_3),$

$$E_1 = \exp\left(-\gamma \widetilde{m}^{1/(2d)}\right), \quad E_2 = \left(\frac{1}{m} \sum_{i=1}^m \|n_i\|_{\mathcal{V}}^2\right)^{1/2}, \quad E_3 = \|f - \mathcal{P}_h(f)\|_{L^{\infty}(\mathcal{U};\mathcal{V})}$$

- E_1 is the approximation error: quantifies how well f is approximated by a DNN in terms of \widetilde{m} .
- E_2 is the measurement error: quantifies the error in the pointwise evaluations of f at the points y_i .
- E_3 is the discretization error: since we work with \mathcal{V}_h instead of \mathcal{V} .

ADCOCK, DEXTER, BRUGIAPAGLIA AND MORAGA, Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data. MSML, volume 145, pages 1–36. (2021)

Motivation	Deep learning approach	Main result	Proof strategy	Numerical results
00000	0000	00	●000	
Outline				

2 Deep learning approach

3 Main result

	Deep learning approach		Proof strategy	
00000	0000	00	0000	0000000000

Orthogonal polynomials

- $\mathcal{U} = [-1, 1]^d$ the unit hypercube.
- $d\varrho(\mathbf{y}) = 2^{-d} d\mathbf{y}$ be the uniform measure on \mathcal{U} .
- $\{\Psi_{\nu}\}_{\nu \in \mathbb{N}_{0}^{d}}$ be the tensor-product, orthonormal Legendre polynomial basis of $L^{2}_{\varrho}(\mathcal{U})$.

Let $L^2_{\rho}(\mathcal{U}; \mathcal{V})$ the Lebesgue-Bochner space of Hilbert-valued functions $f : \mathcal{U} \to \mathcal{V}$.

Polynomial expansion: if $f \in L^2_{\varrho}(\mathcal{U}; \mathcal{V})$, then

$$f = \sum_{oldsymbol{
u} \in \mathbb{N}_0^d} c_{oldsymbol{
u}} \Psi_{oldsymbol{
u}}, \quad c_{oldsymbol{
u}} = \int_{\mathcal{U}} f(oldsymbol{y}) \Psi_{oldsymbol{
u}}(oldsymbol{y}) \, \mathrm{d} arrho(oldsymbol{y}) \in \mathcal{V}.$$

Sequence in $\ell^{p}(\Lambda; \mathcal{V})$: For $1 \leq p < \infty$ and $\boldsymbol{c} \in \ell^{p}(\Lambda; \mathcal{V})$, define

$$\|\boldsymbol{c}\|_{\mathcal{V},\rho}^{\rho}=\sum_{\boldsymbol{\nu}\in\Lambda}\|\boldsymbol{c}_{\boldsymbol{\nu}}\|_{\mathcal{V}}^{\rho}.$$

	Deep learning approach		Proof strategy	
00000	0000	00	0000	0000000000

Polynomial approximation as a compressed sensing problem

Let Λ be a finite index set with $|\Lambda| = N$. Define the normalized measurement matrix

$$oldsymbol{A} = \left(rac{\Psi_{oldsymbol{
u}_j}(oldsymbol{y}_i)}{\sqrt{m}}
ight)_{i,j=1}^{m,N} \in \mathbb{R}^{m imes N},$$

and the normalized measurement and error vectors

$$oldsymbol{b} = rac{1}{\sqrt{m}} \left(f(oldsymbol{y}_i) + n_i
ight)_{i=1}^m \in \mathcal{V}_h^m, \hspace{1em} ext{and} \hspace{1em} oldsymbol{e} = rac{1}{\sqrt{m}} (n_i)_{i=1}^m \in \mathcal{V}^m.$$

Hence, the recovery of the polynomial coefficients $c_{\Lambda} = (c_{\nu})_{\nu \in \Lambda}$ of f is equivalent to solving the noisy linear system

$$Ac_{\wedge} + e + e' = b_{\pm}$$

where

$$oldsymbol{e'} = rac{1}{\sqrt{m}} \left(f(oldsymbol{y}_i) - f_{\Lambda}(oldsymbol{y}_i)
ight)_{i=1}^m$$

Consider the Square Root LASSO problem

$$\min_{\boldsymbol{z}\in\mathcal{V}_h^N}\lambda\|\boldsymbol{z}\|_{\mathcal{V},1}+\|\boldsymbol{A}\boldsymbol{z}-\boldsymbol{b}\|_{\mathcal{V},2}$$

Deep learning approach	Proof strategy	
	0000	

Emulation as a DNN training problem

Key insight: approximating polynomials as DNNs

For any $\delta > 0$, there exists a DNN $\Gamma : \mathbb{R}^d \to \mathbb{R}^{|\Lambda|}$ (of size and depth depending on d, $|\Lambda|$ and δ) such that

$$\|\Psi_{\boldsymbol{\nu}} - \Psi_{\boldsymbol{\nu},\delta}\|_{L^{\infty}(\mathcal{U})} \leq \delta_{\boldsymbol{v}}$$

where $\Gamma(\mathbf{y}) = (\Psi_{\boldsymbol{\nu},\delta}(\mathbf{y}))_{\boldsymbol{\nu}\in\Lambda}$.

[Opschoor, Schwab, Zech (2019)], [Daws, Webster (2020)], [Adcock, Brugiapaglia, Dexter, Moraga (2021)].

We can use this result to emulate the polynomial approximation problem as a DNN training problem:

$$\boldsymbol{A} = \left(\frac{\Psi_{\boldsymbol{\nu}_j}(\boldsymbol{y}_i)}{\sqrt{m}}\right)_{i,j=1}^{m,N} \in \mathbb{R}^{m \times N} \quad \rightsquigarrow \quad \boldsymbol{A}' = \left(\frac{\Psi_{\boldsymbol{\nu}_j,\delta}(\boldsymbol{y}_i)}{\sqrt{m}}\right)_{i,j=1}^{m,N} \in \mathbb{R}^{m \times N}$$

Carefully balancing the error due to this approximation and accounting for all other sources of errors leads to the main result.

Motivation 00000	Deep learning approach 0000	Main result 00	Proof strategy 0000	Numerical results
Outline				

- 2 Deep learning approach
- 3 Main result
- 4 Proof strategy

Deep learning approach 0000		Numerical results 0000000000

Parametric PDE approximation

A practical example:

- $\Omega = (0,1)^2$ physical domain with discretization Ω_h .
- $\mathcal{U} = [-1,1]^d$ parametric domain with uniform probability measure.
- We seek a function $u: \Omega \times \mathcal{U} \to \mathbb{R}$ satisfying

$$-\nabla_{\mathbf{x}} \cdot (\mathbf{a}(\mathbf{x}, \mathbf{y}) \nabla_{\mathbf{x}} u(\mathbf{x}, \mathbf{y})) = g(\mathbf{x})$$
 in Ω , and BC.

Compute: Approximation $u_{\Phi,h}: \mathcal{U} \to \mathcal{V}_h$ with a DNN $\Phi: \mathbb{R}^d \to \mathbb{R}^K$, of the form

$$u_{\Phi,h}(\boldsymbol{x},\boldsymbol{y}) = \sum_{k=1}^{K} (\Phi(\boldsymbol{y}))_k \varphi_k(\boldsymbol{x}).$$

Note: we do not implement the training strategy from the theorem.

				Numerical results
00000	0000	00	0000	0000000000

Training: Given data $\{(\mathbf{y}_i, d_i)\}_{i=1}^m$, $d_i = (c_k(\mathbf{y}_i))_{k=1}^K$ from a fixed FE discretization, minimize the loss function

$$\mathrm{MSE}(\boldsymbol{y}) := rac{1}{m} \sum_{i=1}^m \sum_{k=1}^K (c_k(\boldsymbol{y}_i) - (\Phi(\boldsymbol{y}_i))_k)^2,$$

or

$$\mathrm{MVNSE}(\boldsymbol{y}) := \frac{1}{m} \sum_{i=1}^{m} \|u_h(\boldsymbol{y}_i) - u_{\Phi,h}(\boldsymbol{y}_i)\|_{\mathcal{V}}^2.$$

Testing: We compare the testing error in $L^2_{\varrho}(\mathcal{U}; L^2(\Omega))$ and $L^2_{\varrho}(\mathcal{U}; H^1_0(\Omega))$ norm.

• We use deterministic high-order sparse grid stochastic collocation method.

Deep learning approach 0000		Numerical results

Effective architectures and loss functions

- DNN architectures with MVNSE underperform identical architectures trained with the MSE.
- Big difference between in the $L^2(\Omega)$ -norm (**right**) for tanh, ReLU and Leaky-ReLU 5 × 50 DNNs.

Motivation 00000	Deep learning approach 0000	Main result 00	Proof strategy 0000	Numerical results
Visualization	comparative			

Prediction for $u_h(\mathbf{x}, \mathbf{y})$ from a tanh 5 × 50 DNN at $\mathbf{y} = [0.995, 0]^t$

- Early training: after 2 epochs of Adam (MSE 6.4255).
- At the end of the training: after 2045 epochs (MSE $4.879 \cdot 10^{-7}$).

Deep learning approach 0000		Numerical results

Comparison with Simultaneous Compressed Sensing (SCS)

- Elliptic PDE with d=30 dimensional log-affine parametric diffusion.
- DNNs can outperform state-of-art polynomial-based CS methods.

DNN are Effective learning Hilbert-valued functions

	Deep learning approach 0000		Numerical results
A mixed for	mulation		

Define $\mathbb{K} = diag([a_1, a_2])$ and

$$\begin{aligned} -\nabla \cdot \left(\mathbb{K}(\boldsymbol{x},\boldsymbol{y}) \nabla \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y}) \right) &= \boldsymbol{f}(\boldsymbol{x},\boldsymbol{y}) \quad \boldsymbol{x} \in \Omega, \boldsymbol{y} \in \mathcal{U}, \\ \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y}) &= \boldsymbol{h}(\boldsymbol{x},\boldsymbol{y}) \quad \boldsymbol{x} \in \Gamma_{D}, \boldsymbol{y} \in \mathcal{U}, \\ \nabla \boldsymbol{u}(\boldsymbol{x},\boldsymbol{y}) \cdot \boldsymbol{n} &= 0 \quad \boldsymbol{x} \in \Gamma_{N}, \boldsymbol{y} \in \mathcal{U}. \end{aligned}$$

Given $\mathbf{y} \in \mathcal{U}$, find $(\mathbf{u}(\mathbf{y}), \boldsymbol{\sigma}(\mathbf{y})) \in [L^2(\Omega)] \times \mathcal{H}_{\Gamma_{\mathcal{N}}}(\operatorname{\textit{div}}; \Omega)$ such that

$$\begin{array}{c} \langle \boldsymbol{\sigma}, \boldsymbol{\tau} \rangle_{L^{2}(\Omega)} + \langle \boldsymbol{u}, \nabla \cdot \boldsymbol{\tau} \rangle_{L^{2}(\Omega)} = \langle \boldsymbol{\tau} \cdot \boldsymbol{n}, \boldsymbol{h} \rangle_{\Gamma_{D}} \\ \langle \nabla \mathbb{K} \cdot \boldsymbol{\sigma}, \boldsymbol{v} \rangle_{L^{2}(\Omega)} + \langle \mathbb{K} \boldsymbol{v}, \nabla \cdot \boldsymbol{\sigma} \rangle_{L^{2}(\Omega)} = - \langle \boldsymbol{f}, \boldsymbol{v} \rangle_{L^{2}(\Omega)} \end{array}$$

Here
$$\sigma(\mathbf{y}) = \nabla \mathbf{u}(\mathbf{y}) \in \mathbf{H}_{\Gamma_{N}}(\mathbf{div}; \mathbf{\Omega}).$$

	The strategy	Numerical results
00	0000	0000000000
	00	00 0000

Parametric PDE with mixed B.C. example

- Testing errors for \boldsymbol{u} are substantially smaller than those for its gradient $\nabla \boldsymbol{u}$.
- DNNs can be used as well to approximate parametric PDEs with mixed boundary conditions.

Motivation 00000	Deep learning approach 0000	Main result 00	Proof strategy 0000	Numerical results 00000000●0
Conclusions				

- Deep learning is capable of approximating Hilbert-valued functions from limited data.
- There exists a DNN architecture and training procedure that performs as well as current best-in-class schemes.
- DNN can be used to approximate mixed formulations.
- Using the MSE loss function leads to better and faster approximations.
- In practice DNNs can outperform or match best current methods.

	Deep learning approach 0000		Numerical results 000000000
References			

B. ADCOCK, S. BRUGIAPAGLIA, N.DEXTER, S. MORAGA, Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data. MSML, volume 145, pages 1–36. (2021)

B. ADCOCK, S. BRUGIAPAGLIA, N.DEXTER, S. MORAGA, An efficient algorithm for computing near-optimal polynomial approximations of high-dimensional Hilbert-valued functions, in preparation (2021).

B. ADCOCK AND N.DEXTER, The gap between theory and practice in function approximation with deep neural networks. SIAM Journal on Mathematics of Data Science, 3(2), 624–655.

J. A. A. OPSCHOOR, CH. SCHWAB, AND J. ZECH, Exponential ReLU DNN expression of holomorphic maps in high dimension. SAM Research Report, 2019-35(35), 2019.

A. CHKIFA, N. DEXTER, H. TRAN, AND C. G. WEBSTER., Polynomial approximation via compressed sensing of high-dimensional functions on lower sets. Math. Comp., 87(311):1415–1450, 2018.

smoragas@sfu.ca sites.google.com/view/sebanthalas

DNN are Effective learning Hilbert-valued functions