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Deep Learning Deployment Remains Challenging
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Despite some popular and publicized cases Deep Learning remains difficult to
deploy in production without expert knowledge especially for audio applications



Time-Series Datasets are Particular (Data)

Time-series datasets often concern intricate topics e.g. geophysics, health, bioacoustic:

m labeling requires experts —> costly and slow

m data collection is only performed by interested parties —- small unlabeled
dataset

The combination of those two points prevent the user of end-to-end
supervised/unsupervised/SSL methods. . .



Time-Frequency Representations are Common

Current state-of-the-art solutions circumvent the lack of data issue through
handcrafted designs:
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Learnable Wavelet Transform Example
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Universal Learnable Time-Frequency Representation

m Bring the input x into a different space (Wigner-Ville)
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m Learn a (time) Gaussian filter ®¢ for each frequency f to obtain
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different time-frequency families correspond to different kernels ®¢

The above provides a universal , learnable and interpretable time-frequency
representation with only 4 degrees of freedom per filter removing the supervision of the
filter-bank family



Different Representations Have Different Properties
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Universal Learnable Time-Frequency Representation: Experiments

Linear Scattering Nonlinear Scattering Linear Joint Scattering
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Learned Filters and How to Interpret Them




Conclusions

m Learning from unprocessed time-series has been the lifelong challenge in Deep
Learning

m With the correct internal components time-frequency representation learning as we
proposed provides a universal solution across domains

m There are many possible extensions to this work such as unsupervised learning
based on Entropy minimization

Thank you for your attention
(contact: randallbalestriero@gmail.com)
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