Interpretable and Learnable Super-Resolution Time-Frequency Representation

Randall Balestriero* Hervé Glotin⁺ Richard Baraniuk^{*}

*Rice University, Houston, TX and +Toulon University, Toulon, FR

Deep Learning Deployment Remains Challenging

f⊯in⊠r≓⊖

Deep-learning approach points the way to faster COVID-19 vaccines

By Leah Sherwood, The Science Advisory Board contributing writer

February 8, 2021 -- A novel deep neural network (DNN) can target the most promising multippipope COVID-19 vaccine candidates in a matter of seconds. The new artificial intelligence (A) framework, which was described in Scientific Reports on February 5, may give scientists an edge in the race against SARS-CoV-2 and its variants by reducing the time from vaccine design to clinical tribs.

Law firm teams up with Canadian legal tech company on Al-powered case prediction tool

BY LYLE MORAN

AUGUST 25, 2020, 8:00 AM CDT

Labor and employment law firm Fisher Phillips has partnered with Blue J Legai Inc. to bring the Toronto legal tech company's Al-powered technology, which predicts court outcomes in the employment law arena, to the United States.

20 Nov 2020 | 19:10 GMT

Deep Learning Has Reinvented Quality Control in Manufacturing but It Hasn't Gone Far Enough

AI systems that make use of "lifelong learning" techniques are more flexible and faster to train

By Anatoli Gorchet

Despite some popular and publicized cases Deep Learning remains difficult to deploy in production without expert knowledge **especially for audio applications**

Time-series datasets often concern intricate topics e.g. geophysics, health, bioacoustic:

 \blacksquare labeling requires experts \implies costly and slow

 \blacksquare data collection is only performed by interested parties \implies small unlabeled dataset

The combination of those two points prevent the user of end-to-end supervised/unsupervised/SSL methods...

Current state-of-the-art solutions circumvent the lack of data issue through handcrafted designs:

Learnable Wavelet Transform Example

[R. Balestriero, R. Cosentino, H. Glotin, R. Baraniuk, Spline Filters for End-To-End Deep Learning, ICML18] [R. Balestriero, H. Glotin, Wavelet Learning by Adaptive Hermite Cubic Splines applied to Bioacoustic Chirps, IEEE]

Universal Learnable Time-Frequency Representation

■ Bring the input *x* into a different space (Wigner-Ville)

$$WV_{x}(t,f) = \int_{-\infty}^{\infty} x\left(t-\frac{\tau}{2}\right) x^{*}\left(t+\frac{\tau}{2}\right) e^{-if\tau} d\tau.$$

Learn a (time) Gaussian filter Φ_f for each frequency f to obtain

$$\underbrace{\mathrm{K}_{x}(t,f)}_{\text{earned repr.}} = \int_{\mathbb{R}\times[0,2\pi)} \mathrm{WV}_{x}(\tau,\omega) \Phi_{f}(t-\tau,\omega) d\tau d\omega,$$

different time-frequency families correspond to different kernels Φ_f

The above provides a **universal**, **learnable** and **interpretable** time-frequency representation with only 4 degrees of freedom per filter removing the supervision of the filter-bank family

Different Representations Have Different Properties

Universal Learnable Time-Frequency Representation: Experiments

			Linear Scattering				Nonlinear Scattering				Linear Joint Scattering			
	le. r	rate	morlet	lwvd	sinc	Imorlet	morlet	lwvd	sinc	Imorlet	morlet	lwvd	sinc	Imorlet
docc10	0.0	002	14.3	63	31.1	29.7	54.1	84.7	74.4	74.9	70.7	83.7	82.4	75.8
	0.0	001	12.7	65.5	26.0	28.3	50.1	87.9	77.4	77.4	70.1	80.6	80.8	73.2
	0.0	005	13.0	65.9	17.1	27.0	51.8	87.1	43.3	83.2	65.9	78.0	70.5	80.8
Bird	0.0	002	63.8	77.9	69.6	65.4	84.7	92.9	88.1	85.8	82.1	90.5	87.2	84.3
	0.0	001	65.0	80.0	67.2	64.3	85.0	94.2	88.1	86.6	80.3	88.7	86.8	83.1
	0.0	005	65.2	80.4	67.3	66.9	84.8	94.2	86.0	87.2	78.1	87.5	78.3	82.8
MNIST	0.0	002	43.9	68.4	52.2	44.0	82.3	85.3	10.4	83.0	95.3	97.6	22.1	95.4
	0.0	001	41.5	68.8	43.5	42.2	83.2	89.8	87.1	85.4	89.7	97.8	93.2	90.4
	0.0	005	34.6	68.8	23.9	36.0	82.7	22.1	68.7	88.1	81.1	12	64.4	80.2
comm.	0.0	002	8.1	24.9	9.5	7.6	33.9	38.2	36.2	33.4	65.8	76.7	3.7	66.8
	0.0	001	7.5	26.1	8.0	8.2	33.5	42.9	35.5	33.7	53.6	71.8	27.9	51.9
	0.0	005	7.3	25.7	6.2	6.5	33.0	17.0	28.9	34.8	32.1	35.2	17.2	32.9
fsd	0.0	002	9.7	15.3	10.3	9.0	22.9	23.1	2.3	27.9	40.1	38.8	1.6	42.0
	0.0	001	9.8	16.7	10.4	10.6	24.2	27.4	13.1	31.1	38.9	44.9	2.1	42.3
	0.0	005	9.0	17.4	5.5	10.2	24.2	28.8	16.9	30.4	25.0	31.5	17.0	33.2

Learned Filters and How to Interpret Them

- Learning from unprocessed time-series has been the lifelong challenge in Deep Learning
- With the correct internal components time-frequency representation learning as we proposed provides a universal solution across domains
- There are many possible extensions to this work such as unsupervised learning based on Entropy minimization

Thank you for your attention

(contact: randallbalestriero@gmail.com)