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Consider the process x; € R modeled by the stochastic
differential equation (SDE):

dxt = f(xt)dt + \/EdW,, t>0.
» f: force field.

» 0 < e < 1: amplitude of the noise
» W;: standard Brownian motion.
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Let A be an attractor of x = f(x).

It can be a stable equilibrium point (/eft) or a limit cycle (right).
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The quasipotential with respect to the attractor A is defined as

)
T .
Un(x) = inf inf / 216 —t(o)F o,

(2)
where ¢ is a path connecting the attractor A and the state x.
» Quasipotential is defined in the state space. (usually in
high-d)

» |t is the “energy” needed for the system to transit from A to
X when the noise is small.
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Quasipotential can be used to'

» identify the maximum likelihood path from A to another

state: the tangent of the path is parallel to f + V U,.
» estimate the expected exit time 7 from A:

limelogE[7] =
e—0

xen(:)]lli’r(]A) UA(X)’
where B(A) is the basin of A.

Freidlin and Wentzell (2012)
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Mesh-based methods?
» compute the quasipotential on 2D or 3D meshes.
» limited to low-d systems.

Path-based methods® (minimum action method (MAM),
adaptive MAM and geometric MAM)

» give quasipotential along the minimum action path.
» expensive when computing quasipotential landscape for
high-d systems.

Curse of dimensionality!

2M. K, Cameron (2012); D. Dahiya and M. Cameron (2018); S. Yang, F. P. Samuel, and K. C. Maria (2019).

3W. E, W. Ren, and E. Vanden-Eijnden (2004); X. Zhou, W. Ren, and W. E (2008); M. Heymann and E. Vanden-Eijnden
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Quasipotential can be characterized by a decomposition of the
force field:

f(x) = —VV(x) +g(x), with VV(x)"g(x) =0, (3)

where the term —V V(Xx) is referred to as the potential
component of f(x) and g(x) as the rotational component.

» The function 2V coincides with the quasipotential up to an
additive constant.
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Theorem 1 (Freidlin and Wentzell)

Suppose the vector field f has the orthogonal decomposition
and V attains its strict local minimum at a point or limit cycle,
denoted by A. If there is a bounded domain D containing A
such that

» V is continuously differentiable in D U 0D;

» V(x) > V(A)and VV(x) # 0 forallx € DUOD andx ¢ A,
then the quasipotential of the system with respect to the
attractor A in the set {x € DU 9D : V(X) < minyesp V(Y)}
coincides with 2V (X) up to an additive constant.
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Given trajectory data, learn the force field in the form of the
orthogonal decomposition.

» The force field f is not explicitly known.

» Data-driven: we learn the force field and the quasipotential
from the data.
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Orthogonal decomposition:

f(x) = -VV(x) +g(x), VV(x)'g(x)=0,

» The two components in the decomposition are represented
by neural networks.
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» Parameterization of V:
Vi(x) = Vo(x) + |x?,

V,: fully connected neural network with activation tanh.

» Parameterization of g by a neural network gy with
continuously differentiable activation (e.g. tanh(z) or
RelLU?(2)).

The parameterized force field is given by

fo(x) = =V V4(X) + go(X).
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The observation dataset

X = {X(t), X(t+ At : i=1,... N, j=0,...,M}

contains N trajectories of the deterministic system

x = f(x)

where Xi(t) denotes the /™ trajectory. Along each trajectory,
2M + 2 data points are sampled at the times

lo,fo + At, 1y, 1y + AL, ..., by, ty + AL,

where fy < t; < ... < ty and At is a small time step.



We take the loss function of the form:
L= Ldyn + )\Lorth'

» L9 s to reconstruct the dynamics as given by the
trajectory data.

» L% s to impose the orthogonality condition.
» )\ is a parameter.
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M
LY = NM+1 > > h ( (Zadlfor Xi(4)] = X (Hm));&)’

i=1 j=0

» T,:is a numerical integrator with time step At.
> h(e; §;) denotes the mean Huber loss.

Lorth S Z ( VV@ ) 99()”() 52)

v Ve(X)\ |99()~()|

> w(y;d2) = y21y>0 + 52}/2Iy<0 with 6, = =
> Xi,...,Xs are representative data points sampled from X.
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» Adam optimizer and mini-batch of size 5000.
» The learning rate exponentially decays.
» Two hidden layers in the neural networks.
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We consider the following system in three-dimensional space

ax 3

dt - 2(X X) (y+z)7
ay _ 3

g y +2(x° — x),

az 3

i —Z+2(x° — Xx).

» This system has two stable equilibrium points:
Xz =(—1,0,0) and x, = (1,0,0).
» The quasipotential is given by

Ux,y.z) =1 —x?)?2 +y? 4+ 22,



» The two neural networks V;: 2-50-50-1 (tanh) and g:
2-50-50-2 (tanh).

» The dataset contains 2 x 10° data points (2,000
trajectories).

The relative root mean square error (rRMSE) and the relative
mean absolute error (rMAE) for the learned quasipotential
Uy(x) are 0.0037 and 0.0017, respectively.
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Figure: Upper: U, (left) and exact quasipotential U (middle) with
z = 0 and along the line y = z = 0 (right). Lower: Trajectories of the

learned and the original dynamics.
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Consider the Ginzburg-Landau equation

u(0,t)y =u(1,t) =0,

U = SUx — 6 V'(u), x€]0,1],
{ u(x,0) = u®(x)

where V(u) = 1(1 — u?)? is double-well potential and ¢ = 0.1.
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By discretizing the interval [0, 1] with a uniform mesh, we obtain
a high-dimensional system

au; Ui_1 — 2U; + Uj14 P .
el A - ; <ji<|[|—
o ) 2 SV (uy), 1<i<Il—-1,
with ug = u; = 0. The state of the system is denoted by
u-= (U1,...,U/_1).
The quasipotential is given by

I

1 = Uit
Eolu] =Y 50 (“—h“‘> Lo V().
i=1



» Take / = 51.

» The two neural networks V;,: 50-100-100-1 (tanh) and gy:
50-100-100-50 (ReLU?).

» The dataset contains 2 x 10 data points (10,000
trajectories).
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Figure: Left: Uy and U along the MEP. Right: Two trajectories from
learned dynamics vs original dynamics.
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» We proposed a method for computing the quasipotential
and at the same time learning the dynamics from the
trajectory data.

» The method is data-driven.

» |t is an efficient method to map the landscape of the
quasipotential in high dimensions.
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