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Dynamical system

Consider the process xt ∈ Rd modeled by the stochastic
differential equation (SDE):

dxt = f(xt)dt +
√
εdWt , t > 0. (1)

I f: force field.
I 0 < ε� 1: amplitude of the noise.
I Wt : standard Brownian motion.
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Attractor

Let A be an attractor of ẋ = f(x).
It can be a stable equilibrium point (left) or a limit cycle (right).
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Quasipotential

The quasipotential with respect to the attractor A is defined as

UA(x) = inf
T>0

inf
ϕ

∫ T

0

1
2
|ϕ̇− f(ϕ)|2 dt , (2)

where ϕ is a path connecting the attractor A and the state x.
I Quasipotential is defined in the state space. (usually in

high-d)
I It is the “energy” needed for the system to transit from A to

x when the noise is small.
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Why do we care about quasipotential?

Quasipotential can be used to1

I identify the maximum likelihood path from A to another
state: the tangent of the path is parallel to f +∇UA.

I estimate the expected exit time τ from A:

lim
ε→0

ε logE [τ ] = min
x∈∂B(A)

UA(x),

where B(A) is the basin of A.

1Freidlin and Wentzell (2012)
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Previous methods

Mesh-based methods2

I compute the quasipotential on 2D or 3D meshes.
I limited to low-d systems.

Path-based methods3 (minimum action method (MAM),
adaptive MAM and geometric MAM)
I give quasipotential along the minimum action path.
I expensive when computing quasipotential landscape for

high-d systems.

Curse of dimensionality!

2M. K, Cameron (2012); D. Dahiya and M. Cameron (2018); S. Yang, F. P. Samuel, and K. C. Maria (2019).
3W. E, W. Ren, and E. Vanden-Eijnden (2004); X. Zhou, W. Ren, and W. E (2008); M. Heymann and E. Vanden-Eijnden

(2008).
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Characterization of quasipotential

Quasipotential can be characterized by a decomposition of the
force field:

f(x) = −∇V (x) + g(x), with ∇V (x)T g(x) = 0, (3)

where the term −∇V (x) is referred to as the potential
component of f(x) and g(x) as the rotational component.

I The function 2V coincides with the quasipotential up to an
additive constant.
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Characterization of quasipotential (cont’d)

Theorem 1 (Freidlin and Wentzell)

Suppose the vector field f has the orthogonal decomposition
and V attains its strict local minimum at a point or limit cycle,
denoted by A. If there is a bounded domain D containing A
such that
I V is continuously differentiable in D ∪ ∂D;
I V (x) > V (A) and ∇V (x) 6= 0 for all x ∈ D ∪ ∂D and x /∈ A,

then the quasipotential of the system with respect to the
attractor A in the set {x ∈ D ∪ ∂D : V (x) ≤ miny∈∂D V (y)}
coincides with 2V (x) up to an additive constant.
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Problem setup

Given trajectory data, learn the force field in the form of the
orthogonal decomposition.

I The force field f is not explicitly known.
I Data-driven: we learn the force field and the quasipotential

from the data.
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Method: Parameterization

Orthogonal decomposition:

f(x) = −∇V (x) + g(x), ∇V (x)T g(x) = 0,

I The two components in the decomposition are represented
by neural networks.
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Method: Parameterization (cont’d)

I Parameterization of V :

Vθ(x) = V̂θ(x) + |x|2,

V̂θ: fully connected neural network with activation tanh.
I Parameterization of g by a neural network gθ with

continuously differentiable activation (e.g. tanh(z) or
ReLU2(z)).

The parameterized force field is given by

fθ(x) = −∇Vθ(x) + gθ(x).
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Method: Trajectory data

The observation dataset

X = {Xi(tj),Xi(tj + ∆t) : i = 1, . . . ,N, j = 0, . . . ,M}

contains N trajectories of the deterministic system

ẋ = f(x)

where Xi(t) denotes the i th trajectory. Along each trajectory,
2M + 2 data points are sampled at the times

t0, t0 + ∆t , t1, t1 + ∆t , ..., tM , tM + ∆t ,

where t0 < t1 < ... < tM and ∆t is a small time step.
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Method: Loss function

We take the loss function of the form:

L = Ldyn + λLorth.

I Ldyn is to reconstruct the dynamics as given by the
trajectory data.

I Lorth is to impose the orthogonality condition.
I λ is a parameter.
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Method: Loss function (cont’d)

Ldyn =
1

N(M + 1)

N∑
i=1

M∑
j=0

h̄
(

1
∆t

(I∆t [fθ; Xi(tj)]− Xi(tj + ∆t)) ; δ1

)
,

I I∆t is a numerical integrator with time step ∆t .
I h̄(e; δ1) denotes the mean Huber loss.

Lorth =
1
S

S∑
i=1

w

(
∇Vθ(X̃i)

T gθ(X̃i)

|∇Vθ(X̃i)| · |gθ(X̃i)|
; δ2

)
,

I w(y ; δ2) = y2Iy>0 + δ2y2Iy<0 with δ2 = 1
10 .

I X̃1, . . . , X̃S are representative data points sampled from X .
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Numerical examples

I Adam optimizer and mini-batch of size 5000.
I The learning rate exponentially decays.
I Two hidden layers in the neural networks.
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Numerical example: 3D system

We consider the following system in three-dimensional space

dx
dt

= −2(x3 − x)− (y + z),

dy
dt

= −y + 2(x3 − x),

dz
dt

= −z + 2(x3 − x).

I This system has two stable equilibrium points:
xa = (−1,0,0) and xb = (1,0,0).

I The quasipotential is given by

U(x , y , z) = (1− x2)2 + y2 + z2.
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Numerical example: 3D system

I The two neural networks Ṽθ: 2-50-50-1 (tanh) and gθ:
2-50-50-2 (tanh).

I The dataset contains 2× 105 data points (2,000
trajectories).

The relative root mean square error (rRMSE) and the relative
mean absolute error (rMAE) for the learned quasipotential
Uθ(x) are 0.0037 and 0.0017, respectively.
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Numerical example: 3D system

Figure: Upper: Uθ (left) and exact quasipotential U (middle) with
z = 0 and along the line y = z = 0 (right). Lower: Trajectories of the
learned and the original dynamics.
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Numerical example: High-d system from
discretized PDE

Consider the Ginzburg-Landau equation
ut = δuxx − δ−1V ′(u), x ∈ [0,1],
u(0, t) = u(1, t) = 0,
u(x ,0) = u0(x)

where V (u) = 1
4(1− u2)2 is double-well potential and δ = 0.1.
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Numerical example: High-d system

By discretizing the interval [0,1] with a uniform mesh, we obtain
a high-dimensional system

dui

dt
= δ

ui−1 − 2ui + ui+1

h2 − δ−1V ′(ui), 1 ≤ i ≤ I − 1,

with u0 = uI = 0. The state of the system is denoted by

u = (u1, . . . ,uI−1).

The quasipotential is given by

Eh[u] =
I∑

i=1

1
2
δ

(
ui − ui−1

h

)2

+ δ−1V (ui).
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Numerical example: High-d system

I Take I = 51.
I The two neural networks Ṽθ: 50-100-100-1 (tanh) and gθ:

50-100-100-50 (ReLU2).
I The dataset contains 2× 106 data points (10,000

trajectories).
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Numerical example: High-d system

Figure: Left: Uθ and U along the MEP. Right: Two trajectories from
learned dynamics vs original dynamics.
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Summary

I We proposed a method for computing the quasipotential
and at the same time learning the dynamics from the
trajectory data.

I The method is data-driven.
I It is an efficient method to map the landscape of the

quasipotential in high dimensions.
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