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Numerical observations

Consider a hypothesis class of functions of the form h(x) = A f (x) and risk functionals

R̂n(h) =
1

n

n∑
i=1

`ce
(
h(xi ), ci

)
or R(h) = E(x,c)∼P

[
`ce
(
h(x), c

)]
where

`ce(h, c) = − log

(
exp(hc)∑
j exp(hj)

)
is the cross entropy loss function.

For deep neural network classifiers trained by SGD with cross-
entropy loss, the following become asymptotically true:

1. f maps all points in the class Ci to a single value yi .

2. the distance ‖yi − yj‖ and scalar product 〈yi − yl , yl − yj〉 are independent of i , j , l , i.e. yi
are the vertices of a regular k − 1-dimensional standard simplex in Rm.

3. the i-th row of A is parallel to yi − 1
k

∑
j yj .
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Optimality of neural collapse
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Final layer geometry: collapse to a point

Lemma
Let h ∈ H and set

zi :=
1

|Ci |

ˆ
Ci

h(x ′)P(dx ′), h̄(x) = zi for all x ∈ Ci .

Then R(h̄) ≤ R(h).

Proof.
Jensen’s inequality.

Corollary
If H is the class of P-measurable functions from Rd into a convex compact set V ⊂ Rk , then
any minimizer h of R in H maps the class Ci to a single point zi ∈ V for all i = 1, . . . , k.
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Final layer geometry: simplex symmetry

Lemma (E-W ’20)
Let BR(0) be the ball of radius R > 0 in Rk with respect to the `p-norm, 1 < p <∞. For
every i there exists a unique minimizer zi of

Φi (z) = − log

(
exp(z · ei )∑k
j=1 exp(z · ej)

)

in BR(0) and zi = R
(
α ei + β

∑
j 6=i ej

)
for α, β ∈ R which only depend on p.

Corollary (E-W ’20)
If H is the hypothesis class of P-measurable functions from Rd to the `p-ball of radius R > 0,
the unique minimizer h of R in H maps all x ∈ Ci to zi .
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Penultimate layer optimality

Corollary (E-W ’20)
For any m ≥ k − 1, consider the hypothesis class

H =

{
h : Rd → Rk

∣∣∣∣ h = Af where
f : Rd → Rm is P−measurable, ‖f (x)‖`2 ≤ R a.e.
A : Rm → Rk is linear, ‖A‖L(`2,`2) ≤ 1

}
.

Then the unique minimizer h ∈ H of R satisfies h = Af where

1. there exist values yi ∈ Rm such that f (x) = yi for almost every x ∈ Ci ,

2. the points yi form the vertices of a regular k − 1-dimensional simplex in Rm,

3. the center of mass of the points yi (with respect to the uniform distribution) is at the
origin, and

4. A is an isometric embedding of the k − 1-dimensional space spanned by {y1, . . . , yk} into
Rk .
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Interpretation

1. If H is very expressive, it is best to collapse all data points to the vertices of a standard
simplex.

This argument is not related to optimization algorithms, but the behavior is
expected in the long term limit, as we approach minimal configurations.

2. Norm bounds apply when it is easier to change the direction than the magnitude of an
output.

3. Euclidean geometry seems to play a role:
I Radial Gaussian initialization
I SGD Optimization

4. Generalization: Is H very expressive or just expressive enough for the problem?
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Counterexamples for shallow network
classifiers
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Setting

We consider binary classification, i.e.

I ξ : Rd → {−1, 1},
I h : Rd → R, and

R(h) = −
ˆ
Rd

log

(
exp

(
ξx · h(x)

)
exp

(
h(x)

)
+ exp

(
− h(x)

))P(dx)

=

ˆ
Rd

log
(
1 + exp

(
− 2 ξx · h(x)

))
P(dx)

≈
ˆ
Rd

exp
(
− 2 ξx · h(x)

)
P(dx).
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Geometry 1: ReLU activation

We can take the infinite width limit of neural networks by replacing

f (x) =
1

m

m∑
i=1

ai σ(wT
i x + bi )

with
fπ(x) = E(a,w ,b)∼π

[
a σ(wT x + b)

]
.

Training weights (ai ,wi , bi ) by gradient flow corresponds to training distribution π by Wasserstein
gradient flow. Banach space with the norm

‖f ‖B = inf
{
Eπ
[
|a|
(
|w |+ |b|

)]
: π s.t. f = fπ

}
.

Barron space: Bach ’16, E-Ma-Wu ’17, E-Wojtowytsch ’20, Siegel-Xu ’21
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Geometry 1: ReLU activation

Theorem (Chizat-Bach ’20)
If π0 is a sufficiently ‘spread out’ distribution and πt is trained by (Wasserstein) gradient flow,
then the following hold (under further conditions):

1. ξx hπt (x)→ +∞ for P-almost every x.

2. There exist h∗ ∈ B and µ : [0,∞)→ (0,∞) such that µ(t) hπt → h∗ locally uniformly on
Rd .

3. Let F : B → R, F (h) = minx∈spt P
(
ξx · h(x)

)
. Then h∗ ∈ argmax‖h‖B≤1 F .

See also: Chizat-Bach ’18, Wojtowytsch ’20.
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Geometry 1: ReLU activation

Consider a classification on the real line where

1. C−1 ⊆ (−∞,−1] and C1 ⊆ [1,∞).

2. −1 ∈ C−1 and 1 ∈ C1.

Lemma (E-W ’20)
There exists a continuum of maximum margin classifiers

fb(x) =
1

2 + 2b


x + b x > b

2x −b < x < b

x − b x < −b
, b ∈ [0, 1].

Corollary (E-W ’20)
If C±1 contains more than one point, fb is not constant on the class.
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Geometry 2: Non-convex data classes

Consider

I P = p1 δ−1 + p2 δ0 + p3 δ1.

I C1 = {−1, 1} and C−1 = {0}.

I σ s.t. σ(z) = 0 for z ≤ 0 and σ(z) = 1 for z ≥ 1.

Assume that at initialization

h(x) = a1 σ(−x)− a2σ(x + 1) + a3 σ(x)

for a1, a2, a3. Since σ′ = 0 P-almost everywhere, the inner layer words do not evolve.

R(a1, a2, a3) =

ˆ
R

exp
(
− ξxh(x)

)
P(dx)

= p1 exp(−a1) + p2 exp(−a2) + p3 exp(a2 − a3)
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Geometry 2: Non-convex data classes

The gradient flow equationȧ1
ȧ2
ȧ3

 =

 p1 exp(−a1)
p2 exp(−a2)− p3 exp(a2 − a3)

p3 exp(a2 − a3)


can be solved

and

lim
t→∞

[
f(a1,a2,a3)(t)(1)− f(a1,a2,a3)(t)(−1)

]
= log

(
p3

2p1

)
independently of a1, a2, a3 at time t = 0.
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Interpretation

In shallow networks, neural collapse may not happen dynamically

I even in the output layer and

I even if the class is expressive enough to allow it.

Two geometries:

I Ci intersects the convex hull of Cj or

I Ci and Cj are linearly separable and the activation is ReLU.

Impact for deep learning:

I if classes are not ‘geometrically nice’ two layers before the output, they do not collapse in
the output...

I ... especially when using a pre-trained model and adding few layers at the output.

Related results: Mixon-Parshall-Pi ’20, Lu-Steinerberger ’21

How does data become ‘more separable’ as it propagates through the layers of a DNN?
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Thank you for your attention.
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