Borrowing From the Future

— — Addressing Double Sampling in Model-free Control

Yuhua Zhu - Stanford University

Joint work with Zach Izzo - Stanford University Lexing Ying - Stanford University

Double Sampling problem

Borrow From the Future Algorithm

Numerical experiments

Markov Decision Process (MDP)

A discrete time stochastic process modeling decision making

MDP

- State space: $\mathbb{S} \subset \mathbb{R}^{d_s}$ is a compact set
- Action space: $a \in \mathbb{A}$
- Transition matrix:

$$\mathbb{P}_a(s,s') = \Pr(s_{m+1} = s' | s_m = s, a_m = a)$$

• Immediate reward: r(s, a)

• Policy: $\pi(s)$ specifies the action at state s.

Given a policy, MDP generates a trajectory $\{(s_t, a_t, r_t)\}_{t\geq 0}$.

Value function and Bellman operator

• State-action value function $Q^{\pi}(s,a)$:

The expected discounted cumulative reward starting from state s and action a if policy π is applied.

given a policy discount factor $\in (0,1)$

Start at s with action a

$$Q^{\pi}(s,a) = \mathbb{E}\left[r(s_0,s_1) + \gamma r(s_1,s_2) + \dots + \gamma^t r(s_t,s_{t+1}) + \dots | (s_0,a_0) = (s,a) \right].$$

Goal of Reinforcement Learning: find the best policy that maximizes the return

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

The state-action value function under the optimal policy satisfies the optimal Bellman equation:

$$Q^*=\mathbb{T}^*Q^* \longrightarrow Q^* \text{ is the fixed point of } \mathbb{T}^*$$

$$\mathbb{T}^*Q(s,a)=R(s)+\gamma\mathbb{E}[\max_{a'}Q(s_1,a')|(s_0,a_0)=(s,a)]$$

Optimization problem in model-free control

Based on the **contractive property** of the Bellman operator \mathbb{T}^* :

$$Q_{k+1} = \mathbb{T}^* Q_k \to Q^*$$

Iterative methods, such as Q learning, DQN are all based on the contractive property of the Panan operator.

- When the state space is large, computational cost is large.
- When the discount factor close to 1, the convergence rate is slow.

Function Approximation

Consider parameterized form $Q_{\theta}(s, a)$:-

No longer contractive

Another approach:

Fixed point problem

Optimization problem

$$\min_{ heta} \ rac{1}{2} \mathbb{E}[(Q - \mathbb{T}^*Q)^2]$$

- The expressive of nonlinear functions, such as DNN
- Less computational cost for continuous state space
- More stable than variants of Q-learning methods

However, There is double sampling problem in this formulation.

Model-free RL and Double Sampling Problem

$$\min_{\theta} \ \frac{1}{2} \mathbb{E}[(Q - \mathbb{T}^*Q)^2]$$

with a trajectory $\{s_t\}_{t=0}^T$ generated from an underlying transition dynamics

$$s_{t+1} = s_t + \alpha(s_t, a_t)\epsilon + \sqrt{\epsilon}Z_t, Z_t \sim N(0, 1)$$

Model-free RL: unknown!

Only a trajectory is available in model-free RL!

Double Sampling Problem

Gradient of the objective function: $\mathbb{E}[(Q - \mathbb{T}^*Q)\nabla_{\theta}(Q - \mathbb{T}^*Q)]$

$$\mathbb{E}[(Q-R-\gamma \mathbb{E}[\max_{a}Q(s_{t+1},a)|s_{t},a_{t}])\nabla_{\theta}(Q-R-\gamma \mathbb{E}[\max_{a}Q(s_{t+1},a)|s_{t},a_{t}])]$$

Two independent expectations on the next state

Unbiased gradient:
$$(Q(s_t, a_t) - R_t - \gamma \max_a Q(s_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s'_{t+1}, a)) \nabla_{\theta}(Q(s$$

Two independent samples for the next state

Double Sampling Problem

$$\min_{\theta} \ \frac{1}{2} \mathbb{E}[(Q - \mathbb{T}^*Q)^2]$$

Unbiased gradient: $(Q(s_t, a_t) - R_t - \gamma \max_a Q(s_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a))$

Two independent samples for the next state

Model-free RL:

Only the trajectory $\{s_t\}_{t=0}^T$ under the given policy is available!

- Trajectory is not recorded because of the high dimensionality.
- Hard to simulate exactly from the current state again.

Double Sampling problem

Borrowing From the Future

Numerical experiments

Borrowing From the Future

Unbiased gradient: $(Q(s_t, a_t) - R_t - \gamma \max_a Q(s_{t+1}, a)) \nabla_{\theta} (Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a))$

The underlying transition: $s_{t+1} = s_t + \alpha(s_t, a_t)\epsilon + \sqrt{\epsilon}Z_t, Z_t \sim N(0, 1)$

Good approximation when the drift term is sufficiently smooth.

Borrow extra randomness from the future.

BFF model-free control

Unbiased gradient:
$$(Q(s_t, a_t) - R_t - \gamma \max_a Q(s_{t+1}, a)) \nabla_{\theta}(Q(s_t, a_t) - R_t - \gamma \max_a Q(s'_{t+1}, a))$$

Unbiased SGD: $\theta_{k+1} = \theta_k - \tau f(s_t, s_{t+1}; \theta_k) \nabla_{\theta} f(s_t, s'_{t+1}; \theta_k)$

where $f(s_t, s_{t+1}; \theta) = Q(s_t, a_t) - R(s_t) - \gamma \max_a Q(s_{t+1}, a')$

BFF:

$$s_t + \Delta s_{t+1},$$

where $\Delta s_{t+1} = s_{t+2} - s_{t+1}$

More generally,
$$\theta_{k+1}=\theta_k-\tau f(s_{t+1})\sum_{i=1}^n w_i\nabla_\theta f(s_t+\Delta s_{t+i})$$
 with $\sum_{i=1}^n w_i=1$

Theoretical results

$$\min_{ heta} \,\, \mathbb{E}\left[rac{1}{2}\delta^2
ight]$$

where
$$\delta = Q - \mathbb{T}^*Q = Q(s_t, a_t) - R_t - \mathbb{E}[\max_a Q(s_{t+1}, a) | s_t, a_t]$$

with underlying transition dynamics: $s_{t+1} = s_t + \alpha(s_t, a_t)\epsilon + \sqrt{\epsilon}Z_t, Z_t \sim N(0, 1)$

Assumption:

State space S and action space A can be embedded into a compact set.

Learning rate η is small.

The underlying dynamics change slowly w.r.t. actions: $\|\alpha(s, a_1) - \alpha(s, a_2)\| \leq C$.

Thm [Z-Izzo-Ying]

 \parallel (p.d.f of BFF) – (p.d.f of unbiased SGD) \parallel

$$\leq C_1 e^{-C_2 t} + O\left(\epsilon \sqrt{\mathbb{E}[\delta_*^2]}\right) \sqrt{1 - e^{-C_2 t}}$$

 $\mathbb{E}[\delta_\star^2] = \min_{\theta} \mathbb{E}[\delta^2]$ is the smallest Bellman residual that the unbiased SGD can achieve

Double Sampling problem

Borrow From the Future Algorithm

Numerical experiments

Continuous state space

Underlying transition probability:

$$s_{t+1} = s_t + a_t \epsilon + \sigma Z_t \sqrt{\epsilon},$$

$$a_t \in \mathbb{A} = \{\pm 1\}, \ \epsilon = \frac{2\pi}{32}, \ \sigma = 0.2.$$

The reward function is $r(s_{t+1}, s_t, a_t) = \sin(s_{t+1}) + 1$.

Compared BFF with:

- Uncorrelated sampling: $f(s_{t+1})\nabla f(s'_{t+1})$ Unbiased SGD, but unrealistic!
- Sample Cloning: $f(s_{t+1})\nabla f(s_{t+1})$ Commonly used biased SGD in practice, but less accurate than BFF.
- Primal-Dual: $\min_{\theta} \delta(\theta)^2 = \min_{\theta} \max_{\omega} \delta(\theta) y(\omega) \frac{1}{2}y(\omega)^2$ GTD: Sutton (2008); SBEED: Dai et al. (2018)
 - Not stable when the max is taken over non concave function

Q-control

300 10000 12300

Relative error decay, log scale

Q, action 2

Cartpole from Open Al Gym

Cartpole

Summary

- We propose a new algorithm BFF to alleviate the double sampling problem in the model-free control.
- BFF has an advantage over other BRM algorithms for model-free RL, especially for problems with continuous state spaces and smooth underlying dynamics.
- We prove that the difference between the BFF algorithm and the unbiased SGD first decays exponentially and eventually stabilizes at an error of $O(\delta_{\star}\epsilon)$, where δ_{\star} is the smallest Bellman residual that unbiased SGD can achieve.

Thanks!