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Double Sampling problem




8 vDP

Markov Decision Process (MDP)

A discrete time stochastic process modeling decision making

State space: S C R% is a compact set
Action space: a € A

Transition matrix:
P.(s,s") = Pr(s;mi1 = §'|$m = 8,a,, = a)

Immediate reward: 7“(8, a)

Policy: 7(s) specifies the action at state s.

Given a policy, MDP generates a trajectory {(s¢, at, Tt)}tZO.




Value function and Bellman operator

e State-action value function Q" (s, a):
The expected discounted cumulative reward starting from state s and action a if policy 7 is applied.

e (0,1)
QW(Sa a) = I [T(‘SO? 31) + 774(817 32) + ot /ytr(stv St-l-l) + - °|(SO7 aO) — (87 a)] '

Q*(s,a) = max Q" (s, a)

7

The state-action value function under the optimal policy satisfies the optimal Bellman equation:
QF =T Q" - Q" is the fixed point of T*
T*Q(s,a) = R(s) +vE[max Q(s1,a’)[(s0,a0) = (s, a)]

a




Optimization problem in model-free control

Based on the|contractive property|of the Bellman operator T™:

Qi1 =T°Qr — Q7 -

lterative methods, such as Q learning, DQN are all based on the contractive property of the

n operator.

* When the state space is large, computational cost is large.
* When the discount factor close to 1, the convergence rate is slow.

: : : : , _ ’ No longer
=0 aleiilelaANe 0] (0) 11 =1i[e]s | Consider parameterized form (s, a): contractive

Another approach:

min SE[(Q ~ T'Q)?

0

* The expressive of nonlinear functions, such as DNN
e Less computational cost for continuous state space
e More stable than variants of Q-learning methods

There is double sampling problem in this formulation.



Model-free RL and Double Sampling Problem

1

0

min 5 [(Q — T*Q)7]

St4+1 — St -+ Oé(St, a't)e T \/EZD Zt ™~ N(O7 1)

Only a trajectory is available in model-free RL!

with a trajectory {s;}._, generated from an underlying transition dynamics

Gradient of the objective function:

Double Sampling Problem

(@ —R—~

ﬂ[mcszx Q(str1,a)|st, ag]

Q- TQ)Ve(Q —TQ)]

1Vo(Q — R —1

Unbiased gradient: (Q)(s;,a;) — Ry —ymaxQ(s;11,a))Ve(Q(s¢,a;) — Ry — v max

T~

43[m3x Q(s¢11,a)|s¢, at)

/

Two independent expectations on the next state

\

Q(S:S—l—lv a)

/

Two independent samples for the next state




Double Sampling Problem

1

0

min 5 5[(Q — T Q)7

Unbiased gradient: (Q(s;,a;) — Ry — ymaxQ(s;11,a)

from the trajectory {s,,}% _,

Unavailable

\Vo(Q(s¢,ar) — Ry — 7y max

N\

Q(SQ—I—D CL)

v

Two independent samples for the next state

Model-free RL:

Only the trajectory {st}tT:O under the
given policy is available !

® Trajectory is not recorded because of the
high dimensionality.

® Hard to simulate exactly from the current
state again.




Borrowing From the Future




Borrowing From the Future

Unbiased gradient: (()(s:,a;) — Ry — 7y max Q(st11,a))Vo(Q(s¢,ar) — Ry — 7y max Q(Si11,a))

The underlying transition: s;.1 = s; + a(ss, a;)e ++/€Zy, Zy ~ N(0,1)

from the trajectory {s,,}2 _,

RS+ % o — Sti1) Good approximation when the drift

_—

Borrow extra randomness from the future.
9

term is sufficiently smooth.




BFF model-free control

Unbiased gradient: (()(s;,a;) — Ry —ymax Q(si41,a))Ve(Q(St, ar) — Ry —ymax Q(syyq,a))

Unbiased SGD: Ori1 =0 — Tf(s¢,8t21;01)Vof(st ngt 0r)

where f(8t7 St4+1; 9) — Q(Sta CLt) o R(St) o ’Yt‘aiaXQ(St—l-la a’/)

St + As11,
where ASt_|_1 — St4+92 — St+1




More generally, 0r.1 = 0 — 7f(S¢11) Z w; Vof(se + Asii;)  with Z w; = 1
i=1 i=1



Theoretical results

_ 1 _
: | 2 52
min 9

0
where 0 = Q —T"Q = Q(s¢,at) — Ry — *3[1115“ Q(St+1,a)|St, ai]
with underlying transition dynamics: s¢11 = $¢ + (s, ar)e + eZy, Zy ~ N(0, 1)

State space S and action space A can be embedded into a compact set.
Assumption: ’ ; :
earning rate 7 is small.

The underlying dynamics change slowly w.r.t. actions: ||a(s,a1) — a(s,as)| < C.

Thm [Z-1zz0-Ying] | (p.d.f of BFF) — (p.d.f of unbiased SGD) |

< CreC2t 1 0 (e\/ 4:[531) V1 — e=Cat

o o2 2
4#[5*] — m@m "1[5 ] is the smallest Bellman residual that the unbiased SGD can achieve



Numerical experiments
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Continuous state space

Underlying transition probability:

St41 = St + ar€ + 0 Z1v/€,
Q¢ GA:{zzl}, e=2" 0=0.2.

The reward function is r(s;11, S¢, ar) = sin(sza1) + 1.

a b

Qo(s,a) is approximated by a 3-layer NN @& — e

N\ /

Compared BFF with:

» Uncorrelated sampling:  f(st+1)V f(si11) » Unbiased SGD, but unrealistic!

» Sample Cloning:  f(s¢+1)V f(S¢t41) » Commonly used biased SGD in practice, but less accurate than BFF.

» Primal-Dual: ming 6(6)? = ming max,, §(0)y(w) — 2y(w)? GTD: Sutton (2008); SBEED: Dai et al. (2018)

» Not stable when the max is taken over non concave function
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Relative error decay, log scale Relative error decay, log scale
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Cartpole from Open Al Gym




artpole

Relative error decay, log scale
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Summary

* We propose a new algorithm BFF to alleviate the double sampling problem in
the model-free control.

 BFF has an advantage over other BRM algorithms for model-free RL,
especially for problems with continuous state spaces and smooth underlying

dynamics.

 We prove that the difference between the BFF algorithm and the unbiased
SGD first decays exponentially and eventually stabilizes at an error of O(é.¢),
where ¢, Is the smallest Bellman residual that unbiased SGD can achieve.






