
Solving Bayesian Inverse Problems via Variational Autoencoders

Hwan Goh, Sheroze Sherriffdeen, Jon Wittmer, Tan Bui-Thanh

The Oden Institute for Computational Engineering and Sciences
The University of Texas at Austin

May 23, 2021



Overview

1. Inverse Problems Introduction

2. Flexible, Adaptive Framework for Rapid Data-Driven Uncertainty
Quantification

3. Results

4. Conclusion

2/47



Introduction - Inverse Problems

• Suppose we have a physical system with states y and parameters u.

• Whilst forward problems challenge us to find the observation data yobs given the
parameters u, inverse problems challenge us to find the parameters u given the
observeration data yobs.

• An example is the heat equation with the state being temperature and
parameters being the heat conductivity

−∇ · u∇y = 0 in Ω (1a)

−u(∇y · n̂) = Bi y on Ωext \ Ωroot (1b)

−u(∇y · n̂) = −1 on Ωroot (1c)

where u denotes the thermal heat conductivity, Bi is the Biot number, Ω is the
physical domain and Ωroot is the bottom edge of the domain, Ωext is the exterior
edges of the domain.
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Steady-State Heat Equation Parameters and State

Figure: Top: mesh and sensor distribution. Bottom left: parameter distribution. Bottom
right: state distribution.
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Solution Process

• Often, we solve for the parameter by minimizing a functional

min
u
‖yobs −F(u)‖22 +R(u) (2)

where F is the parameter-to-observable (PtO) map, R is some regularization
functional and u is the parameter-of-interest (PoI).

• What if we try and learn a parameterized inverse problem solver Ψ through
optimizing

min
W

1

M

M∑
m=1

∥∥∥u(m) −Ψ
(
y
(m)
obs ,W

)∥∥∥2
2

+R(W ). (3)

using a dataset of parameter and observation pairs
{(

u(m),y
(m)
obs

)}M
m=1

.
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Proposed Regularization

Instead of regularizing the weights of the network directly, one possible approach is
to regularize the output of the network.

min
W

1

M

M∑
m=1

∥∥∥u(m) −Ψ
(
y
(m)
obs ,W

)∥∥∥2
2

+
∥∥∥y(m)

obs −F
(

Ψ
(
y
(m)
obs ,W

))∥∥∥2
2
. (4)

min
W

1

M

M∑
m=1

∥∥∥u(m) −Ψ
(
y
(m)
obs ,W

)∥∥∥2
2

+
∥∥∥M(

y
(m)
obs −F

(
Ψ
(
y
(m)
obs ,W

)))∥∥∥2
2

(5)

where M is some noise regularization operator.

min
W

1

M

M∑
m=1

∥∥∥u(m) −Ψ
(
y
(m)
obs ,W

)∥∥∥2
2

+
∥∥∥M(

y
(m)
obs −F

(
Ψ
(
y
(m)
obs ,W

)))∥∥∥2
2

(6a)

+
∥∥∥P (Ψ

(
y
(m)
obs ,W

))∥∥∥2
2

(6b)

where P is a map encoding prior information.
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Motivation for Uncertainty Quantification

• Training a neural network through the optimization problem (6) yields a learned
inverse problems solver that outputs a point estimate of our PoI.

• As it is, this deterministic solver is unable to provide information about the
accuracy of the estimate. It would be more ideal to have a probabilistic
interpretation of our learned solver that facilitates uncertainty quantification.

• With this in mind, we are motivated to view inverse problems under the
framework of Bayesian statisics. In this setting, we instead work towards a
solver for Bayesian inverse problems which, in turn, allows us to formally
establish the regularization terms in (6).
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Bayesian Inverse Problems

• Under the statistical framework, the PoI of an inverse problem is considered to
be a random variable instead of an unknown value.

• Consequently, the solution of the statistical inverse problem is a probability
distribution instead of a single estimated value.

• The statistical framework attempts to remove the ill-posedness of inverse
problems by restating the inverse problem as a well-posed extension in a larger
space of probability distributions
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Bayesian Inverse Problems

• With the assumption that our data is corrupted by additive noise, we consider
the following observational model

Y = F (U) + E (7)

• ‘given the observed data yobs, what is the distribution of the PoI U responsible
for our measurement?’. Therefore, the conditional density pU|Y (u|Y = yobs) is
the solution to the statistical parameter estimation problem under the Bayesian
framework.
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Posterior Distribution

• To approximate this conditional density, we utilize Bayes’ Theorem to form a
model of pU|Y (u|Y = yobs) called the posterior distribution which we denote as
ppost:

ppost (u|yobs) ∝ plkhd (yobs|u) ppr (u) . (8)

where plkhd is the likelihood model and ppr is the prior model.

• This challenges us with the completion of three tasks:
1. construct the likelihood model plkhd that expresses the interrelation between the

data and the unknown,
2. using prior information we may possess about the unknown u, construct a prior

probability density ppr that expresses this information,
3. develop methods which extract meaningful information from the posterior

probability density ppost.
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Posterior Distribution

To address these three tasks, two assumptions are often made:

1. The first assumption supposes that the noise E is mutually independent with
respect to our parameter of interest U . Then, using our observation model (7)
and marginalization of the noise E, we obtain the following likelihood model:

plkhd = pE (yobs −F (u)) . (9)

2. The second assumption supposes that all are random variables are Gaussian.
That is, N (µE ,ΓE) and N (µpr,Γpr). With this, our posterior model becomes

ppost(u|yobs) ∝ pE(yobs −F(u))ppr(u) (10a)

= exp

(
−1

2

(
‖yobs −F(u)− µE‖

2

Γ−1
E

+
∥∥u− µpr

∥∥2
Γ−1
pr

))
(10b)
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Posterior Distribution

Recall:

min
W

1

M

M∑
m=1

∥∥∥u(m) −Ψ
(
y
(m)
obs ,W

)∥∥∥2
2

+
∥∥∥M(

y
(m)
obs −F

(
Ψ
(
y
(m)
obs ,W

)))∥∥∥2
2

(11a)

+
∥∥∥P (Ψ

(
y
(m)
obs ,W

))∥∥∥2
2

(11b)

The functionals

−‖yobs −F(u)− µE‖
2

Γ−1
E

+
∥∥u− µpr

∥∥2
Γ−1
pr

(12)

look like a good candidate for the regularization terms. We now formalize the
inclusion of these terms.
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Notion of Distance

• Let p(u|y) denote the target posterior density we wish to estimate and let
qφ(u|y) denote our model of the target density parameterized by φ.

• To optimize for the parameters φ, we require some notion of distance between
our model posterior and target posterior.

• In our work, we elect to use the following family of Jensen-Shannon divergences
(JSD) [Nielsen(2010)]:

JSα(q||p) = αKL(q||(1− α)q + αp) + (1− α)KL(p||(1− α)q + αp) (13)
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JSD Family

Figure: Illustrating the behaviour of the JS divergence family for the case of under model
underspecification for the range of values of α. This figure was obtained from [Huszár(2015)]
A: the target data. For images B, C and D, an unimodal Gaussian is used to approximate
the target data where the contours show level sets of the approximating distribution q. B:
α = 0.1. C: α = 0.5. D: α = 0.9.
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Main Theorem

Theorem

Let α ∈ (0, 1). Then

1

α
JSα(qφ(u|y)||p(u|y)) =− Eu∼qφ

[
log

(
α+

(1− α)qφ(u|y)

p(u|y)

)]
(14a)

+ log(p(y)) (14b)

− LJS(φ, y) (14c)

where

LJS(φ, y) =
1− α
α

Eu∼p(u|y)

[
log

(
α+

(1− α)qφ(u|y)

p(u|y)

)]
+ Eu∼qφ

[
log

(
p(y,u)

qφ(u|y)

)]
.

(15)
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Insightful Corollary

Corollary

Let α ∈ (0, 1) and consider again (14). Equation (14) is bounded above such that:

1

α
JSα(qφ(u|y)||p(u|y)) ≤−KL(qφ(u|y)||p(u|y)) (16a)

+ log(p(y))− log(1− α)− (1− α) log(1− α)

α
(16b)

+
1− α
α

KL(p(u|y)||qφ(u|y)) (16c)

− Eu∼qφ [log (p(y|u)] + KL (qφ(u|y)|p(u)) . (16d)

In particular, we have that

−LJS(φ, y) ≤ − (1− α) log(1− α)

α
+

1− α
α

KL(p(u|y)||qφ(u|y)) (17a)

− Eu∼qφ [log (p(y|u))] + KL (qφ(u|y)||p(u)) .

(17b)
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Key Point

The significance of Corollary 2 is that minimization of

1− α
α

KL(p(u|y)||qφ(u|y))− Eu∼qφ [log (p(y|u))] + KL (qφ(u|y)||p(u)) (18)

with respect to φ minimizes

1

α
JSα(qφ(u|y)||p(u|y)) + KL(qφ(u|y)||p(u|y)) (19)

which is exactly the task of variational inference.
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Flexibility of our Framework

Note that for

1

α
JSα(qφ(u|y)||p(u|y)) + KL(qφ(u|y)||p(u|y)) (20)

• Recalling

JSα(q||p) = αKL(q||(1− α)q + αp) + (1− α)KL(p||(1− α)q + αp) (21)

It is clear that if α = 1 then we recover the usual zero-avoiding KL(q||p). Indeed,
as α→ 1, then the first term in (18) tends to 0 which recovers the negative of
the ELBO.

• In (20), the presence of the KLD term ensures that our model posterior will
inherently be zero-avoiding. However, the 1

α
scaling factor ensures that as

α→ 0, the consequently zero-forcing JSD dominates the KLD.
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Flexibility of our Framework

• Therefore, our UQ-VAE framework essentially retains the full flexibility of the
JSD family.

• With only an adjustment of a single scalar value, our framework allows the
selection of the notion of distance used by the optimization routine to direct the
model posterior towards the target posterior.

• This, in turn, translates to control of the balance of data-fitting and
regularization used in the training procedure.
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Regularized Optimization Framework

The minimization target:

1− α
α

KL (p(u|y)||qφ(u|y))− Eu∼qφ [log (p(y|u))] + KL (qφ(u|y)||p(u)) (22)

correspond to the three desired terms:

min
W

1

M

M∑
m=1

∥∥∥u(m) −Ψ
(
y
(m)
obs ,W

)∥∥∥2
2

+
∥∥∥M(

y
(m)
obs −F

(
Ψ
(
y
(m)
obs ,W

)))∥∥∥2
2

(23a)

+
∥∥∥P (Ψ

(
y
(m)
obs ,W

))∥∥∥2
2
. (23b)
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Regularized Optimization Framework

First, notice that

KL (p(u|y)||qφ(u|y)) = Eu∼p(u|y)

[
log

(
p(u|y)

qφ(u|y)

)]
(24a)

=
((((((((((
Eu∼p(u|y) [log (p(u|y))]− Eu∼p(u|y) [log (qφ(u|y))] (24b)

where the first term can be omitted when optimizing with respect to φ since it does
not have any dependence on φ.
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Regularized Optimization Framework

With dataset
{(

u(m),y
(m)
obs

)}M
m=1

, we form a Monte-Carlo approximation

E
u∼p

(
u

∣∣y(m)
obs

) [− log
(
qφ
(
u
∣∣y(m)

obs

))]
≈ − log

(
qφ
(
u(m)

∣∣y(m)
obs

))
and assume a Gaussian model: qφ

(
u
∣∣y(m)

obs

)
= N

(
u
∣∣µ(m)

post,Γ
(m)
post

)
to obtain

D

2
log(2π) +

1

2
log
∣∣∣Γ(m)

post

∣∣∣+
1

2

∥∥∥µ(m)
post − u(m)

∥∥∥2
Γ
(m)−1
post

.
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Regularized Optimization Framework

For the remaining terms:

−Eu∼qφ [log (p(y|u)] =
∥∥∥y(m)

obs −F (u(W ))− µE
∥∥∥2

Γ−1
E

(25)

and

KL (qφ(u|y)|p(u)) = tr
(
Γ−1

pr Γ
(m)
post

)
+
∥∥∥µ(m)

post − µpr

∥∥∥2
Γ−1
pr

+ log
|Γpr|∣∣∣Γ(m)
post

∣∣∣ (26)
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Regularized Optimization Framework

With dataset
{(

u(m),y
(m)
obs

)}M
m=1

we have the following optimization problem:

min
W

1

M

M∑
m=1

1− α
α

(
log
∣∣∣Γ(m)

post

∣∣∣+
∥∥∥µ(m)

post − u(m)
∥∥∥2

Γ
(m)−1
post

)
(27a)

+
∥∥∥y(m)

obs −F
(
u
(m)
draw(W )

)
− µE

∥∥∥2
Γ−1
E

(27b)

+ tr
(
Γ−1

pr Γ
(m)
post

)
+
∥∥∥µ(m)

post − µpr

∥∥∥2
Γ−1
pr

+ log
|Γpr|∣∣∣Γ(m)
post

∣∣∣ (27c)

where

(
µ

(m)
post,Γ

1
2
(m)

post

)
= Ψ

(
y
(m)
obs ,W

)
, (27d)

u
(m)
draw(W ) = µ

(m)
post + Γ

1
2
(m)

post ε
(m), (27e)

ε(m) ∼ N (0, ID) (27f)
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Schematic

Figure: Schematic of the UQ-VAE framework.
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Inherent Adaptive Optimization

Looking closely at

1− α
α

(
log
∣∣∣Γ(m)

post

∣∣∣+
∥∥∥µ(m)

post − u(m)
∥∥∥2

Γ
(m)−1
post

)
(28)

we can see that the presence of the matrix Γ
(m)−1
post in the weighted norm of (28) acts

as an adaptive penalty for the data-misfit term. With this in mind, we make the
following observations about the two terms in (28):

• Since limα→0
1−α
α

=∞, then a choice of α ≈ 0 emphasizes the log
∣∣∣Γ(m)

post

∣∣∣ term.

This causes a preference for a small posterior variance which, in turn, creates a
large penalization of the data-misfit term by the inverse of the posterior
covariance.

• In contrast, a choice of α ≈ 0 relieves the requirement of a small posterior
variance to promote the influence of the PoI data on the optimization problem.
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Inherent Adaptive Optimization
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Analytical Result

Consider a Gaussian prior model N
(
µpr,Γpr

)
and Gaussian noise model

N (µE ,ΓE). Suppose the target posterior p(u|yobs) ∼ N (µtrue,Γtrue) is such that

Γtrue =
(
FTΓ−1

E F + Γ−1
pr

)−1

(29a)

µtrue = Γtrue

(
FTΓ−1

E (yobs − µE) + Γ−1
pr µpr

)
(29b)

where F is a matrix.
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Analytical Result

Theorem
Suppose the model posterior qφ(u|yobs) ∼ N

(
µpost,Γpost

)
is such that

µpost = Wµyobs + bµ (30a)

Γ
1
2
post = L�L1 + diag (σ) (30b)

log (σ) = Wσyobs + bσ (30c)

vec (L) = WLyobs + bL (30d)

where L1 is a lower triangular matrix of ones with zeros on the diagonal. Let α = 1
2
. Then

the optimization problem

min
Wµ,bµ,Wσ ,bσ ,WL,bL

1− α
α

(
log |Γpost|+ tr

(
Γ−1
postΓtrue

)
+

∥∥µpost − µtrue

∥∥2
Γ−1
post

)
(31a)

+ tr
(
Γ−1
E FΓpostF

T
)

+
∥∥yobs − Fµpost − µE

∥∥2
Γ−1
E

(31b)

+ tr
(
Γ−1
pr Γpost

)
+

∥∥µpost − µpr

∥∥2
Γ−1
pr

+ log
|Γpr|
|Γpost|

(31c)

achieves its minimum if and only if Wµ, bµ,Wσ , bσ ,WL, bL are such that µpost = µtrue
and Γpost = Γtrue.
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Learning the PtO

With dataset
{(

u(m),y
(m)
obs

)}M
m=1

we have the following optimization problem:

min
W ,W d

1

M

M∑
m=1

1− α
α

(
log
∣∣∣Γ(m)

post

∣∣∣+
∥∥∥µ(m)

post − u(m)
∥∥∥2

Γ
(m)−1
post

)
(32a)

+
∥∥∥y(m)

obs −Ψd

(
u
(m)
draw(W ),W d

)
− µE

∥∥∥2
Γ−1
E

(32b)

+ tr
(
Γ−1

pr Γ
(m)
post

)
+
∥∥∥µ(m)

post − µpr

∥∥∥2
Γ−1
pr

+ log
|Γpr|∣∣∣Γ(m)
post

∣∣∣ (32c)

where

(
µ

(m)
post,Γ

1
2
(m)

post

)
= Ψ

(
y
(m)
obs ,W

)
, (32d)

u
(m)
draw(W ) = µ

(m)
post + Γ

1
2
(m)

post ε
(m), (32e)

ε(m) ∼ N (0, ID) (32f)
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Schematic

Figure: Schematic of the UQ-VAE framework where the PtO is learned.
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Computational Cost

Problem dimension is 2601 degrees of freedom.
Training Cost:

• Modelled PtO map F (CPU):
4.5 seconds per batch on a dual-socket node with two Intel Xeon E5-2690 CPUs
for a total of 24 cores.
Approximately one day for 400 epochs of batch-size 100 when M = 5000

• Learned PtO map Ψd (GPU):
0.35 seconds per batch on a NVidia 1080-TI GPU.
Approximately 10 minutes for 400 epochs of batch-size 100 when M = 5000

Inference Cost:

• In total, it takes on average 110 seconds to form the Laplace approximation.

• Forming the model posterior by propagation through a trained neural network
takes, on average, 0.04 seconds; more than 2750 times faster.
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Results: 0% Noise, M = 50

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Results: 0% Noise, M = 500

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Results: 0% Noise, M = 5000

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Results: 1% Noise, M = 50

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Results: 1% Noise, M = 500

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Results: 1% Noise, M = 5000

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Results: 5% Noise, M = 50

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Results: 5% Noise, M = 500

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Results: 5% Noise, M = 5000

Figure: Top row left to right: mesh with sensors denoted with a red cross, true PoI, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
α = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Key Observations

• Selecting α small (zero-forcing KLD) yields larger uncertainty estimates

• Smaller datasets yield larger uncertainty estimates representing the lack of
information

• Larger noise regularization yields larger uncertainty estimates

• Our framework yields feasible estimates for 0% and 1% noise but struggles with
5% noise when a large dataset is used
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Conclusion

• This framework is derived from a solid mathematical foundation and possesses a
complex, dynamic interplay of many factors from variational inference as well as
regularization.

• Despite this complexity, the results show that the framework is robust and, aside
from the usual tunable parameters associated with neural network architecture,
requires relatively few design decisions.

• Our results also show that the estimates from our framework exhibits behaviour
similar to that of more traditional methods.

• Our results also show that the estimates from our framework is responsive to the
training dataset size. Larger datasets represent more information which is
communicated with smaller uncertainty estimates.

• However, our preliminary investigation utilizes somewhat crude approximations.
We believe that the results presented in this paper can be improved with the
inclusion of more sophisticated statistical machinery.

43/47



Data-Driven Double-Edged Sword

• The utilization of datasets alleviates the burden on accurate prior and physics
modelling.

• Poorly constructed or highly corrupted datasets could completely sabotage the
inversion process regardless of any accuracy achieved by the prior and physics
models.
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Retains the Same Strategy of Traditional Methods
• Recall

ppost(u|yobs) ∝ pE(yobs −F(u))ppr(u) (33a)

= exp

(
−1

2
(‖Γ−1

E (yobs −F(u)− µE)‖2RO + ‖Γ−1
pr (u− µpr)‖

2
RD )

)
.

(33b)

Where u = [u1, u2, . . . , uD]T where

ud =
D∑
k=1

udϕk(xd). (34)

• In contrast, one can view a neural network as an expansion over a non-linear
basis. Indeed, consider a two-layer neural network to output the model posterior
mean µpost = [µ1, µ2, . . . , µD]T:

µd
(
yobs,W

〈1〉,W 〈2〉
)

=
K∑
k=1

W
〈2〉
dk h

(
O∑
o=1

W
〈1〉
ko yo

)
(35)

where yobs = [y1, y2, . . . , yO]T, W 〈l〉 is the lth layer of weights and h is an
activation function.
• With this view, we have the non-linear basis function ϕk = h

(∑O
o=1W

〈1〉
ko yo

)
which is dependent on the optimization target W 〈1〉.
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Retains the Same Strategy of Traditional Methods

Here are a few points to consider:

• Whilst the inference procedure for a traditional method involves an optimization
problem, the inference procedure of UQ-VAE involves a propagation through a
trained neural network. Indeed, optimization is only required in UQ-VAE for
training.

• Notice that the non-linear basis function ϕk = h
(∑O

o=1W
〈1〉
ko yo

)
includes a

dependence on the observation data yobs. It is this characteristic that
encapsulates the idea that the optimization problem is used to train a solver.

• Whilst the optimization target for the traditional method appears only in the
expansion coefficients, the optimization target for UQ-VAE appears in the basis
function as well as its expansion coefficient. Therefore, intuitively, the
optimization process for UQ-VAE is more ill-posed.
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Generality Allows Jumping on the Band-wagon

• What we offer here is a mathematical framework and not a neural network
architecture.

• Benefit of this is we are left with alot of room to sprinkle deep learning magic
(ResNets, CNNs, Transformers, Domain specific-architectures)
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