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Suppose we have a physical system with states y and parameters u.

Whilst forward problems challenge us to find the observation data yons given the
parameters u, inverse problems challenge us to find the parameters u given the
observeration data Yobs-

An example is the heat equation with the state being temperature and
parameters being the heat conductivity

-V -uVy =10 in Q (1a)
—u(Vy-h) =Biy on Q™" \ Q" (1b)
—u(Vy-h)=—1  on Q" 9]

where u denotes the thermal heat conductivity, Bi is the Biot number, €2 is the
physical domain and Q°°" is the bottom edge of the domain, Q' is the exterior
edges of the domain.
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Top: mesh and sensor distribution. Bottom left: parameter distribution. Bottom
right: state distribution.
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Often, we solve for the parameter by minimizing a functional
. 2
min [y, = F(a)ll; + R(u) )

where F is the parameter-to-observable (PtO) map, R is some regularization
functional and u is the parameter-of-interest (Pol).

What if we try and learn a parameterized inverse problem solver ¥ through
optimizing

M
1 2
3 (m) (m)
min - EﬂHu —\If(yobs,W)HQ—i—R(W). (3)

M
using a dataset of parameter and observation pairs {(u(m), yf;]?s))} .
m=1
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Instead of regularizing the weights of the network directly, one possible approach is
to regularize the output of the network.

e 3 o v () - (e W)
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where M is some noise regularization operator.
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Training a neural network through the optimization problem (6) yields a learned
inverse problems solver that outputs a point estimate of our Pol.

As it is, this deterministic solver is unable to provide information about the
accuracy of the estimate. It would be more ideal to have a probabilistic
interpretation of our learned solver that facilitates uncertainty quantification.

With this in mind, we are motivated to view inverse problems under the
framework of Bayesian statisics. In this setting, we instead work towards a
solver for Bayesian inverse problems which, in turn, allows us to formally
establish the regularization terms in (6).
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Under the statistical framework, the Pol of an inverse problem is considered to
be a random variable instead of an unknown value.

Consequently, the solution of the statistical inverse problem is a probability
distribution instead of a single estimated value.

The statistical framework attempts to remove the ill-posedness of inverse
problems by restating the inverse problem as a well-posed extension in a larger
space of probability distributions
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With the assumption that our data is corrupted by additive noise, we consider
the following observational model

Y=FU)+FE (7)

‘given the observed data y,,,, what is the distribution of the Pol U responsible
for our measurement?’. Therefore, the conditional density pyjy (ulY = y,,) is

the solution to the statistical parameter estimation problem under the Bayesian
framework.
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To approximate this conditional density, we utilize Bayes’ Theorem to form a
model of py|y (u|Y =y,,) called the posterior distribution which we denote as

ppost:
Ppost (U]Yops) X Prichd (Yons|@) Ppr (1) - ©)

where pikna is the likelihood model and py, is the prior model.

This challenges us with the completion of three tasks:
construct the likelihood model pjnL,q that expresses the interrelation between the
data and the unknown,
using prior information we may possess about the unknown u, construct a prior
probability density ppr that expresses this information,
develop methods which extract meaningful information from the posterior
probability density ppost-
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To address these three tasks, two assumptions are often made:

The first assumption supposes that the noise £ is mutually independent with
respect to our parameter of interest U. Then, using our observation model (7)
and marginalization of the noise E, we obtain the following likelihood model:

Pikhd = PE (Yops — F (1)) (9)

The second assumption supposes that all are random variables are Gaussian.
That is, N (¢, T'r) and N (g, Tpr). With this, our posterior model becomes

Poost (WY ons) X PE(Yons — F (1)) ppr (1) (10a)

1
= exXp <_§ (HyObs _ }—(u) — IJ‘EHigl + Hu — Il’eri;rl)) (1Ob)
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Recall:

1§ ) ? (m) ) *
p g 2 [ = ¥ (s W, + [ (v - 7 (v (2 w))], - e
+P (v (i w))], (11v)
The functionals
~ ¥ obs = F (W) = prplpas + [ = e[ (12)

look like a good candidate for the regularization terms. We now formalize the
inclusion of these terms.
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Let p(uly) denote the target posterior density we wish to estimate and let
g (u]y) denote our model of the target density parameterized by ¢.

To optimize for the parameters ¢, we require some notion of distance between
our model posterior and target posterior.

In our work, we elect to use the following family of Jensen-Shannon divergences
(JSD) [Nielsen(2010)]:

JSa(qllp) = oKL(g||(1 — a)q + ap) + (1 — «)KL(p|[(1 — a)q + ap) (13)
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Ilustrating the behaviour of the JS divergence family for the case of under model
underspecification for the range of values of .. This figure was obtained from [Huszdr(2015)]
A: the target data. For images B, C and D, an unimodal Gaussian is used to approximate
the target data where the contours show level sets of the approximating distribution g. B:
a=0.1. C:a=0.5. D: a=0.9.
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Theorem
Let a € (0,1). Then

1. L (o (L= @)ae(uly)
~I8a(ge (uly)llp(uly)) = — Eurg, [108 (a+ ) )]

+ log(p(y))
= Lys(o,y)

where

1—«o 1 — a)ge(uly)

(14a)
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Corollary
Let o € (0,1) and consider again (14). Equation (14) is bounded above such that:

éJSa(%(U\y)IIP(UIy)) < — KL(gg (u|y)[p(u|y)) (16a)

(1—a)log(l —a)

2 (16b)

+log(p(y)) — log(1 — o) —

+ KLyl (uy) (16¢)
~ Eungy log (p(sl)] + KL (g (uly)lp(w) . (16d)

In particular, we have that

(1-a)log(l—0a) 1; CKL(p(uly)l g4 (uly)) (17a)

— Eung, [log (p(ylw)] + KL (g0 (uly)|Ip(u)) -
(17D)

7LJS(¢7 y) S - @




The significance of Corollary 2 is that minimization of

L OKL(p(uly) 146 (0l)) — Bungg log (p(yIW)] + KL (g (aly)llpw) — (18)

with respect to ¢ minimizes

éJSa(%(UIy)Hp(UIy)) + KL(gg (uly)||p(uly)) (19)

which is exactly the task of variational inference.
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Note that for

éJSa(w(UIy)Hp(UIy)) + KL(gg (uly)|[p(uly)) (20)

Recalling
JSa(qllp) = aKL(g||(1 — a)q + ap) + (1 — a)KL(p||(1 — a)q + ap) (21)

It is clear that if & = 1 then we recover the usual zero-avoiding KL(q||p). Indeed,
as « — 1, then the first term in (18) tends to 0 which recovers the negative of
the ELBO.

In (20), the presence of the KLD term ensures that our model posterior will
inherently be zero-avoiding. However, the é scaling factor ensures that as
a — 0, the consequently zero-forcing JSD dominates the KLD.
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Therefore, our UQ-VAE framework essentially retains the full flexibility of the
JSD family.

With only an adjustment of a single scalar value, our framework allows the
selection of the notion of distance used by the optimization routine to direct the
model posterior towards the target posterior.

This, in turn, translates to control of the balance of data-fitting and
regularization used in the training procedure.
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The minimization target:

1—«

(p(uly)|lge(uly)) — Eu~g, [log (p(y|u))] + KL (g4 (uly)||p(u))

correspond to the three desired terms:

W 3 o -9 R+ e = (o (W)
m=1

+[P (v (W),

2

(22)

(23a)

(23b)
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First, notice that

KL (p(uly)(uly) = Buepiayy 106 (20| (240)
_E.. PEEY))] = Buuty) llo8 (g(uly))]  (24D)

where the first term can be omitted when optimizing with respect to ¢ since it does
not have any dependence on ¢.
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M
With dataset {(u(m)7 yg’;g))} , we form a Monte-Carlo approximation
m=1

E (i) (108 oo (o382))] = =1 (oo (™ 12))

obs

and assume a Gaussian model: g (u’ygg) =N (u|u§:5>t, 1“;73;) to obtain

D 1 - 2
5} log(2m) + 3 log ‘I‘( )

post

L om
3w

(m)—1"
rpost
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For the remaining terms:

2
~Eura log (p(y1w)] = ||y = F (u(W) = po|__, (25)
E
and
KL( _ r—lr(m) (m) 2 ‘FPT| 2
q¢(u|y)|p(u)) =tr Pr - post + ’J’post ""pr r-1 + g ‘I‘(m> ( )
L2 post
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M
With dataset {(u<m), yi’&))} we have the following optimization problem:
m=1

M
L l-a ) m _ L m]?
H‘}‘I/HM Z:l a (10g ‘Fpost + ‘ I"‘post —-u HFE,TS)fl (27&)
o) F () (W) = || 27b
+ yobs udraw( ) l"‘E r=1 ( )
E
- - 2 L
+tr (Fprl FIE)OS>t> + ‘ I“L<pos)t - I“l’pr 1 + log | L ‘ (27C)
oy ‘I\(m)
post
1
where (/Léﬁls)“ I‘go(::)) =V (yf,’g?, W) ] (27d)
m m l(”’L) m
u((lra>w(W) - I’l’i)os>t + Fgost 6( )a (276)
€™ ~ N(0,Ip) (27f)
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post €(m) NN(O,ID)

-« 2 (m) (m) 2
— (log T |+ i — ™ ) + |5 = F (uG, )) — m

;'
It E

(—-1p(m) (m) 2 LA
or () + [ = s+ 0w 2
P st

PO

Schematic of the UQ-VAE framework.




Looking closely at

1— 2
2 (togfr| + s - w0 ) (28)

F;?s)t71

we can see that the presence of the matrix I‘E)Tgs)fl in the weighted norm of (28) acts
as an adaptive penalty for the data-misfit term. With this in mind, we make the
following observations about the two terms in (28):

Since lim, .o ITTQ = 00, then a choice of o &~ 0 emphasizes the log ’Fézls)t term.

This causes a preference for a small posterior variance which, in turn, creates a
large penalization of the data-misfit term by the inverse of the posterior
covariance.

In contrast, a choice of a ~ 0 relieves the requirement of a small posterior
variance to promote the influence of the Pol data on the optimization problem.
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Consider a Gaussian prior model N (,upr, I‘pr) and Gaussian noise model
N (ng,Tg). Suppose the target posterior p(uly,ps) ~ N (Kirue, Lerue) is such that

=1l
Torne = (FTrglF + r;}) (292)
Hirue = Ptrue (FTI‘E‘l (yobs _ /LE) + I‘;rlp’pr) (29b)

where F' is a matrix.
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Theorem
Suppose the model posterior qg(u|yons) ~ N (posts Tpost) is such that

IJ’post = Wuyobs ar bu

1
2
Fpost

IOg (O’) =Wqo Yobs + ba‘
vec (L) = WLyObS + bL

=L G Ly + diag (o)

where Ly is a lower triangular matriz of ones with zeros on the diagonal. Let o = 3
the optimization problem

l—-«

(10g |Fpost‘ - tr <F;O15trtruc> A Hupost — Mtrue Hi;:ﬁ) (31&)

min
Wby ,We,be,Wp,br, «
1 2
+tr (FE FFPOStFT> + ||yobs - F“‘post - I"EHI‘EI (31b)

T

3lc
‘Fpost| ( )

+ tr (F;rlrpost) + H’J‘post = Neri; + log

achieves its minimum if and only if W, by, Wo,be, W, by, are such that Ppost = Mtrue
and 1—‘post = Itrue-




M
With dataset {(u(m),yggbs))} we have the following optimization problem:
m=1

M
. 1 11—« ) (m) (m |2
im0 (o i+ i~ (322)
m=1 post
(m) _ ™ (W _ 2 39h
T |[Yobs U (W), 1295 -1 ( )
E
_ 2 I
+ tr (Fprll“é?s)t) + Hué’fﬁt — P, +1log [T (32¢)
Tpr ‘F(m)
post
h (m) p3m) _ g (ym) py 32d
where Hpost? post yobs7 ) ( )
L(m)
u() (W) = pli, + T2 €™, (32¢)
€™ ~ N(0,Ip) (32f)
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(m) m
Hpost Tugl, (W)

draw

O
®
0 Ly, <U<m) (W), Wq
@
@

€m) ~N(0,Ip)

1; (1 [z |+ + |5 = wa (ulrm W) W) - wHi, .

tr (05T n

Schematic of the UQ-VAE framework where the PtO is learned.
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Problem dimension is 2601 degrees of freedom.
Training Cost:
Modelled PtO map F (CPU):
4.5 seconds per batch on a dual-socket node with two Intel Xeon E5-2690 CPUs
for a total of 24 cores.
Approximately one day for 400 epochs of batch-size 100 when M = 5000
Learned PtO map ¥4 (GPU):
0.35 seconds per batch on a NVidia 1080-TI GPU.
Approximately 10 minutes for 400 epochs of batch-size 100 when M = 5000
Inference Cost:
In total, it takes on average 110 seconds to form the Laplace approximation.

Forming the model posterior by propagation through a trained neural network
takes, on average, 0.04 seconds; more than 2750 times faster.
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Top row left to right: mesh with sensors denoted with a red cross, true Pol, cross-sectional
uncertainty estimate and pointwise posterior variance from Laplace approximation. Second to fourth rows:
a = 0.00001, 0.1, 0.5. First and third columns: cross-sectional uncertainty estimates. Second and fourth
columns: approximate pointwise posterior variance. First and second columns: modelled PtO map. Third
and fourth columns: learned PtO map.
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Selecting « small (zero-forcing KLD) yields larger uncertainty estimates

Smaller datasets yield larger uncertainty estimates representing the lack of
information

Larger noise regularization yields larger uncertainty estimates

Our framework yields feasible estimates for 0% and 1% noise but struggles with
5% noise when a large dataset is used
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This framework is derived from a solid mathematical foundation and possesses a
complex, dynamic interplay of many factors from variational inference as well as
regularization.

Despite this complexity, the results show that the framework is robust and, aside
from the usual tunable parameters associated with neural network architecture,
requires relatively few design decisions.

Our results also show that the estimates from our framework exhibits behaviour
similar to that of more traditional methods.

Our results also show that the estimates from our framework is responsive to the
training dataset size. Larger datasets represent more information which is
communicated with smaller uncertainty estimates.

However, our preliminary investigation utilizes somewhat crude approximations.
We believe that the results presented in this paper can be improved with the
inclusion of more sophisticated statistical machinery.
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The utilization of datasets alleviates the burden on accurate prior and physics
modelling.

Poorly constructed or highly corrupted datasets could completely sabotage the
inversion process regardless of any accuracy achieved by the prior and physics
models.

44/a7



Recall

Prost (u|YObS) X pE(yobs 7 ]:(u))ppf(u) (33&)
1 _ _
— exp (=5 (I3 ¥pe = (0 ~ o)l + T = 1) o) ).
(33b)
Where u = [u1,ug, ..., uD]T where

D

Uqg = Zudapk (Xd) (34)
k=1

In contrast, one can view a neural network as an expansion over a non-linear
basis. Indeed, consider a two-layer neural network to output the model posterior

T
mean upost - [/’L17I’L23 s 7N‘D] :
K o
o (o W) =S (P wile) @
k=1 o=1

where y .. = [y1, 2, - -, yo]T7 W is the Ith layer of weights and h is an
activation function.
With this view, we have the non-linear basis function pr = h (Zoo:l W,ilc? yo)

which is dependent on the optimization target wb,
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Here are a few points to consider:

Whilst the inference procedure for a traditional method involves an optimization
problem, the inference procedure of UQ-VAE involves a propagation through a
trained neural network. Indeed, optimization is only required in UQ-VAE for
training.

Notice that the non-linear basis function ¢ = h (200:1 W,ii) yo> includes a
dependence on the observation data y, ... It is this characteristic that
encapsulates the idea that the optimization problem is used to train a solver.

Whilst the optimization target for the traditional method appears only in the
expansion coefficients, the optimization target for UQ-VAE appears in the basis
function as well as its expansion coefficient. Therefore, intuitively, the
optimization process for UQ-VAE is more ill-posed.

46/47



What we offer here is a mathematical framework and not a neural network
architecture.

Benefit of this is we are left with alot of room to sprinkle deep learning magic
(ResNets, CNNs, Transformers, Domain specific-architectures)
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A family of statistical symmetric divergences based on jensen’s inequality.

How (not) to train your generative model: Scheduled sampling, likelihood,
adversary?

Solving bayesian inverse problems via variational autoencoders.

uq-vae, 2020.

Auto-encoding variational bayes.
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https://github.com/hwangoh/uq-vae
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