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Graph/matrix alignment

Question: Given two graphs G = (V, E) and G′ = (V′, E′) with |V| = |V′|, what
is the best way to match nodes of G with nodes of G′?

Minimizing disagreements: Find a bijection f : V → V′ that minimizes∑
(i,j)∈V2

(
1(i,j)∈E − 1(f (i),f(j))∈E′

)2
,

or, equivalently solve
max

Π
〈G,ΠG′Π>〉,

where Π runs over all permutation matrices. ←− NP-hard in the worst case
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Planted Alignment with gaussian weights

Correlated Wigner model:

• Draw the planted permutation π∗ uniformly at random in Sn.

• (Ai,j,Bπ∗(i),π∗(j))1≤i<j≤n are i.i.d. N
(

0,
(

1 ρ

ρ 1

))
with ρ ∈ [0, 1].

In other words:
B = ρ · Π∗TAΠ∗ +

√
1− ρ2 · H,

where H is an independent copy of A, and Π∗i,j = 1j=π∗(i).
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MAP estimation

pπ∗|A,B (π|a,b) ∝ pπ∗,A,B (π, a,b)

∝ exp

− 1
2(1− ρ2)

∑
1≤i<j≤n

(
Bπ(i),π(j) − ρAi,j

)2

 ,

where ∝ indicates equality up to some factors that do not depend on σ. The
MAP estimator is given by

π̂MAP := arg max
π

pπ∗|A,B (π|A,B) = arg max〈A,ΠBΠT〉.
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Main result: sharp threshold for exact alignment

Theorem (Achievability part)

If for n large enough
ρ2 ≥ (4 + ε) log n

n (1)

for some ε > 0, then there is an estimator (namely, the MAP estimator) π̂
of π given A,B such that π̂ = π∗ with probability 1− o(1).

Theorem (Converse part)

Conversely, if
ρ2 ≤ 4 log n− log log n− ω(1)

n (2)

then any estimator π̂ of π given A,B verifies π̂ = π∗ with probability o(1).
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Proof outline

• Achievability result: analysis of the MAP estimator

π̂MAP = arg min
π
L(π, A,B),

with
L(π, A,B) :=

∑
1≤i<j≤n

(
Bπ(i),π(j) − ρAi,j

)2
.

We show that π̂MAP = π∗ with high probability whenever ρ2 ≥ (4+ε) log n
n .

First moment method fails because of correlation.

• Converse result: we show that when ρ2 ≤ 4 log n−log log n−ω(1)
n , w.h.p. there

exists a perturbation of π∗ (namely π∗ ◦ τ for some transposition τ ) s.t.
L(π∗ ◦ τ, A,B) < L(π∗, A,B).
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Comparison with vector alignment

Linear Assignment problem: π∗ ∼ U(SN) and u, v are random vectors such

that (ui, vπ∗(i))1≤i≤n are i.i.d. N
(

0,
(

1 ρ

ρ 1

))
with ρ ∈ [0, 1].

MAP estimator:
arg max

π
〈u,Πv〉.

(Dai-Cullina-Kiyavash ’19): sharp threshold for exact recovery at
− 1

2 log(1− ρ2) & 2 log N, for N = n(n− 1)/2, i.e. at

1− ρ2 . n−8.

→ vector alignment (resp. LAP) is a very bad relaxation of matrix alignment
(resp. QAP).
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Computational limits

State-of-the art algorithms for (almost) exact recovery

• Degree profiles (Ding-Ma-Wu-Xu 18’), spectral method (Fan-Mao-Wu-Xu
19’) with time complexity O(n3) requires√

1− ρ2 ≤ O
(
log−1 n

)
.

• A simpler spectral method with complexity O(n2) (G-Massoulié-Lelarge
19’) requires √

1− ρ2 ≤ O
(

n−7/6
)
.

In any case, ρ needs to tend to 1 : very far from the informational threshold
at nρ2

log n ∼ 4

−→ hard phase conjectured to be really wide for this reconstruction
problem.
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Thank you!
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