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Abstract

Our MSML paper proposes machine learning inspired methods for
computing numerical Ricci-flat Kähler metrics, and compares them
with previous work. In this talk we review Kähler geometry, explain
the Ricci flatness problem and embedding methods, and briefly
describe our new results.
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Introduction

Introduction

According to superstring theory, there are six extra dimensions of
space. We cannot observe them directly, because they form a very
small compact manifold. But the topology and geometry of this
manifold determine the spectrum of particles which we do observe.

Only very special types of manifold can be used in superstring
compactification. For one thing, the manifold has to solve Einstein’s
equations, which are part of string theory. To a good approximation
that means the manifold has to admit a Ricci flat metric (more on this
below).

Very few manifolds are known to admit Ricci flat metrics. The best
studied class which do is the Calabi-Yau manifolds. They can be
studied in great detail using techniques of algebraic geometry. They
are also favored in string theory because they allow for supersymmetry
to be unbroken at low energies.
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Introduction

We expect that not many people in the audience will be familiar with
string theory or higher dimensional algebraic geometry. We refer those
who are to our paper, to arXiv:2105.03991 which adds mathematical
details, and to
https://sites.duke.edu/scshgap/michael-douglas-lectures/

What we will do here is review Kähler geometry and describe the
embedding method, before summarizing our new results.
Kähler geometry is a special case of Riemannian geometry, and many
Riemannian manifolds are also Kähler manifolds. For example, every
Riemann surface (a two dimensional orientable Riemannian manifold)
is a Kähler manifold. Many higher dimensional manifolds are Kähler.

Kähler geometry is simpler than Riemannian geometry, but it already
exhibits the most important properties of curved space, such as
non-constant curvature. And projective Kähler manifolds (the case we
discuss) have natural embeddings into Euclidean spaces, analogous
to – but far simpler than – Laplacian eigenmaps and the like. These
embeddings are a general and powerful tool.
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Basic geometric definitions

Basic geometric definitions

Let us review some basic definitions of Riemannian geometry, and
then compare with the corresponding definitions in complex and
Kähler geometry.

Manifold – a space M in which every small region “looks like” a ball in
D-dimensional real space RD. The simplest example is RD, and we
can use as coordinates the D-component vector

~X = X i = (X 1,X 2, . . . ,X D).

The general definition of manifold uses coordinate charts, which are
diffeomorphisms (maps) from subsets Ui ⊂ M to subsets of RD.
We can then define functions between manifolds f : M → N, vector
fields, differential forms and tensors, including the metric tensor.

V ≡
D∑

i=1

V i(X )
∂

∂X i ; ω ≡
D∑

i=1

ωi(X )dX i ; ds2 ≡
∑

1≤i,j≤D

gij(X )dX idX j .
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Basic geometric definitions

A complex manifold uses almost the same definitions but now the
coordinates are complex variables

~Z = Z i = (Z 1,Z 2, . . . ,Z N).

The simplest example is N-dimensional complex space CN . From the
point of view of differential geometry, this is the same manifold as R2N ,
as we could define

Z 1 = X 1 + iX N+1; Z 2 = X 2 + iX N+2; . . . ; Z N = X N + iX 2N

But when we use the Z ’s, we are using additional geometric structure,
called complex structure. In the case N = 1, it is the same as
conformal structure (local rescalings which preserve angles).

Complex coordinate transformations must be holomorphic, meaning a
new coordinate W is a function of the Z ’s and not the complex
conjugate Z̄ ’s.

∂W j

∂Z̄ ī
= 0;

∂

∂Z̄ ī
≡ 1

2

(
∂

∂X̄ i
+ i

∂

∂X̄ N+i

)
.
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Basic geometric definitions

In Riemannian geometry, the length of a tangent vector V at a point p
is

||V || =

√ ∑
1≤i,j≤D

gij(p)V i(p)V j(p).

We can use the same definition in complex geometry, but usually we
want to ensure that the length of a vector is a non-negative real
number. This is true iff gij is hermitian, meaning

ds2 = 2gi j̄dZ idZ̄ j̄ ; gi j̄ = g∗ī j ; gij = gī j̄ = 0.

Example: the Riemann sphere is C ∪ {∞}, with the round metric

ds2 =
4dZdZ̄

(R2 + |Z |2)2 = 4
dX 2 + dY 2

(R2 + X 2 + Y 2)2

This is also the stereographic projection of (x , y , z) ∈ R3 as Z = x+iy
R−z .
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Basic geometric definitions

In Riemannian geometry, each component of the metric tensor gij is an
independent function, so specifying a metric requires D(D + 1)/2
functions. On the other hand one can redefine the coordinates to fix D
of these functions. So the data of a metric is comparable to
D(D − 1)/2 functions, but making this precise is very complicated.

In complex geometry, a hermitian metric is specified by N2

independent real functions, but the coordinate redefinitions must be
holomorphic functions. So this problem becomes easier.

A Kähler metric is one for which

gi j̄ =
∂2K

∂Z i∂Z̄ j̄

for a (locally defined) real function K (Z , Z̄ ), the Kähler potential. For
the Riemann sphere the Kähler potential is

K = 2 log
(

R2 + |Z |2
)
.
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Basic geometric definitions

What motivates this definition?

ds2 = 2dZ idZ̄ j̄ ∂2K
∂Z i∂Z̄ j̄

The answer is rather deep and involves the metric compatible
connection and its holonomy. In Riemannian geometry, a connection
allows carrying tensors along a path from one point to another. If one
carries a vector around a closed loop, in general it will undergo a
rotation. The holonomy group consists of all such rotations, and for a
general curved manifold one can get a general rotation in SO(D).

For a complex manifold, one
might expect the holonomy
group to be restricted to the
unitary rotations, U(N) ⊂
SO(2N). But it turns out that
this restriction only holds for a
Kähler manifold.
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Basic geometric definitions

The simplest higher dimensional Kähler manifolds are the complex
projective spaces CPN . They are most easily defined as the quotient of
CN+1 − {~0} by an equivalence relation,

(Z 1, . . . ,Z N+1) ∼= λ(Z 1, . . . ,Z N+1) ∀λ 6= 0 ∈ C.

One can use patches Ui in which Z i = 1, etc., related by λi→j = 1/Zj .
In fact CP1 ∼= S2, but the higher dimensional cases are not equivalent
to spheres, even as topological spaces.

The most symmetric metric on CPN is the Fubini-Study metric, with
Kähler potential

K = 2 log

(
N+1∑
i=1

|Z i |2
)
.

This does not define a function because it depends on λ. However, if
we compare the Kähler potentials before and after taking ~Z → λ~Z , we
find

K → K + 2 log |λ|2; gi j̄ = ∂i ∂̄jK is invariant.
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Basic geometric definitions

Many complex manifolds can be defined as submanifolds of CPN –
these are called projective manifolds. The simplest are the
hypersurfaces in CPN .

A hypersurface is the subset of points satisfying a single equation
f (x) = 0. For example the sphere is a real hypersurface in Euclidean
space,

0 = f (X ) = (X 1)2 + (X 2)2 + . . .+ (X n)2 − R2.

A hypersurface will be a manifold if there is no p on the surface (so,
satisfying f (p) = 0) with all ∂f/∂X |p = 0.
Examples of complex hypersurfaces: the Fermat hypersurfaces in CP2,

(Z 1)n + (Z 2)n + (Z 3)n = 0.

These are Riemann surfaces of genus g = (n − 1)(n − 2)/2. On the
next slide we show n = 3, the cubic elliptic curve, from Bozlee and
Amethyst 2019 (ICERM Illustrating Mathematics),
https://im.icerm.brown.edu/portfolio/visualizing-complex-points-of-elliptic-curves/
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Basic geometric definitions
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Basic geometric definitions

The cubic curve (n = 3, genus one, the torus) is special because it
admits a flat metric.
By comparison, the case n = 2 is topologically a sphere (and
equivalent to CP1 as a complex manifold), while the cases n ≥ 4 are
higher genus surfaces. In both cases one can see just on topological
grounds (using the Gauss-Bonnet theorem) that there could be no
nonsingular flat metric.

The generalization to higher dimensions is that the degree n = N + 1
hypersurface in CPN admits a Ricci flat metric (more about this later).
For n = 4 and N = 3, so (Z 1)4 + (Z 2)4 + (Z 3)4 + (Z 4)4 = 0, we have a
K3 surface. It is the only simply connected topological four real
dimensional manifold which admits a Ricci flat metric.

The next case is the Fermat quintic with n = 5 and N = 4. The Kähler
manifolds which satisfy the topological condition necessary to have a
Ricci flat metric are called Calabi-Yau manifolds. Even in six real
dimensions, there are many topologically distinct CY manifolds. All are
projective and a large number are “hypersurfaces in toric varieties.”
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Basic geometric definitions

All of the formulas of Riemannian geometry for the connection and for
the curvature become simpler for a Kähler metric. In particular, the
Ricci tensor, which for a Riemannian metric would be

becomes

Ri j̄ =
∂2

∂Z i∂Z̄ j̄
log det

k ,̄l
gk l̄ .

Thus it is entirely determined by the local volume element det gk l̄ .

Essentially, the Ricci tensor measures the variation of the volume
element on moving in a direction v (it decreases for positive curvature).
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Basic geometric definitions

The Ricci tensor is the geometric basis for Einstein’s equation of
general relativity,

Rij −
1
2

gijgklRkl = 8πTij .

The right hand side is the stress-energy of matter and in the vacuum it
is zero. Thus one can rewrite the vacuum Einstein’s equation as the
Ricci flatness condition,

Rij = 0

Specializing this to Kähler geometry and using the formulas from the
previous slide, it becomes

∂2

∂Z i∂Z̄ j̄
log det

k ,̄l

(
∂2K

∂Z k∂Z̄ l̄

)
= 0.

(as discussed in the paper it can be simplified a bit more). This is one
elliptic PDE for one unknown function K , so on a contractable region
and with given boundary conditions it should have a unique solution.
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Basic geometric definitions

For a compact Kähler manifold which satisfies the topological
condition, and given the Kähler class (the volumes of a basis of
homology two-cycles), Yau proved in 1978 that there is a unique
solution of this equation, and thus a Ricci flat metric. This is by far the
most intricate solution to Einstein’s equations known to exist – in fact
the proof is nonconstructive and it is generally believed that no closed
form expression for it exists.
String theory predicts that there are six “hidden” dimensions of space
which must satisfy Einstein’s equations, and the Calabi-Yau metrics
are the leading candidates to consider.

From the point of view of numerical methods, this is an interesting and
challenging PDE. It is of Monge-Ampere type: the terms with most
derivatives are nonlinear. It describes highly nontrivial curved spaces
about which a lot is known mathematically, so there are many checks
on the results. But very little structure is given a priori – basic
questions such as the best way to discretize space or otherwise
reduce to a finite dimensional problem are wide open.
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Basic geometric definitions

Rather than discretize the manifold M, many works (following
Donaldson arXiv: math/0512625) use an embedding method. The
general idea is to postulate an embedding into a higher dimensional
ambient space RK or CK and a family of metrics g[W ] on this space.
The restriction of the ambient metric then gives a family of metrics on
M, over which one can minimize an energy function.

Of course, if M is a hypersurface in CPN , then it is defined as an
embedding and we can restrict the Fubini-Study potential on CPN to M,

K = 2 log
∑
i ,̄j

hi j̄Z
i Z̄ j̄ ,

Although on CPN we can set h to the identity using a coordinate
transformation, this is not the case on M (it would change the equation
f = 0).
This is a natural family of metrics which depends on (N + 1)2 real
parameters – a good start but we want more parameters to improve
the approximation.
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Basic geometric definitions

To get a family of metrics with more parameters, one can replace Z i

with a complete basis of holomorphic sections of a line bundle on M,
defining a Kodaira embedding of M. By taking higher degree line
bundles one can get as many parameters as needed.
For the special case of a submanifold M ↪→ CPN , one can think of this
as a composition of the defining embedding with a Veronese
embedding. This is defined by taking all the degree k monomials in the
original coordinates, so(

Z 1, . . . ,Z n
)
→
(

(Z 1)k , (Z 1)k−1(Z 2), (Z 1)k−1(Z 3), . . . , (Z 2)k , . . .
)
.

The resulting family of Kähler potentials is

K = 2 log
∑
I,J̄

HIJ̄(Z I1Z I2 . . .Z Ik )(Z̄ J̄1Z̄ J̄2 . . . Z̄ J̄k )

The precise number of parameters depends on M, but asymptotically
is O(kdimR M). As k →∞ these metrics are dense in L2.
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Basic geometric definitions

The idea of embedding a manifold into higher dimensions to get a
simpler, more linear description is familiar from machine learning:

On the one hand, one can embed a graph into higher dimensional
Euclidean space using the eigenfunctions of its Laplacian (the
“Laplacian eigenmaps” technique, Belkin and Niyogi 2002). This
can be done for a manifold in the same way (Bérard, Besson and
Gallot 1985).
On the other hand, one can take a set of points in high dimensions
and look for a low dimensional submanifold which contains them.

Laplacian eigenmaps is a geometric embedding – it is determined by
giving a metric. But in our problem we do not know the metric a priori.

The Kodaira embedding is also a geometric embedding, but it requires
less structure to determine: a complex structure and a choice of
holomorphic line bundle. In algebraic geometry one relates this
second choice to the Kähler class of the manifold, so all of the
additional structure of the embedding is already given to us a priori.
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Our results

Our results

We have implemented a Tensorflow/Keras package for working
with Kähler metrics on hypersurfaces in projective space, and for
finding Ricci flat metrics.
It uses the embedding method and represents a manifold M using
(1) the defining equation f = 0 and (2) a set of points sampled
from M. The Ricci flatness condition can be interpreted as finding
the K such that det ∂∂̄K interpolates the constant function.
It represents the Kähler potential using a bihomogeneous
network, a FFN with inputs Z i Z̄ j̄ and activation function z → z2.
This defines a parameterized subset of embedded Fubini-Study
metrics of very high degree k = 2depth−1 with a controllable
number of parameters O(depth× width2).

K = log W(`) ◦θD`
◦W(`−1) ◦ . . .◦θD2 ◦W(2) ◦θD1 ◦W(1) ◦ (Re ZIZ̄J̄, Im ZIZ̄J̄)

with θ(z) = z2 and the W(n)’s are real matrices of weights.
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Our results

We studied Calabi-Yau (Ricci flat Kähler) metrics on quintic
hypersurfaces in CP4, looking at dependence on network depth
and width, the symmetry group of the manifold, and the shortest
length scale on the manifold (distance to discriminant locus).
The bihomogeneous networks can often represent Ricci flat
metrics with many fewer parameters than the general
Fubini-Study metric. However, we have evidence that this is not
always the case – metrics with no symmetry and short scales
require as many parameters as the general Fubini-Study metric.

On the graph on the following slide, the y-axis is the log mean square
error for the approximate Ricci flat metric, and the x-axis is (the 3/2
power of) the shortest length scale (vanishing cycle radius) on the
manifold. The colors indicate different models for the metric: 2,3,4 are
Fubini-Study metrics of that degree, est8 estimates the error for degree
8 as explained in the paper, and the others are depth 2,3,4
bihomogeneous networks with the given widths. While 70_70_70_1
has fewer parameters, the 300_300_300_1 has almost as many
parameters as the general degree 8 metric.
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