BEAR: sketching BFGS algorithm for ultra-high dimensional feature selection in sublinear memory

Amirali Aghazadeh Vipul Gupta Alex DeWeese Ozan Koyluoglu Kannan Ramchandran

big and high dimensional data in everyday life

- web services
- language processing
- networking
- genomics/proteomics
- health-care

- critical need for scalable algorithms to extract important features from the data
- limited computing resource

problem setup

- n data points $(\theta_i)_{i=1}^n = (\mathbf{x}_i, y_i)_{i=1}^n$ living in ultra-high dimensional feature space $\mathbf{x}_i \in \mathbb{R}^p$ $(p \gg n)$ goal: find a small subset of features best explains the output

- k-sparse feature vector $\boldsymbol{\beta}^* \in \mathbb{R}^p$ loss function $f(\boldsymbol{\beta}, \boldsymbol{\theta}) : \mathbb{R}^p \to \mathbb{R}$
- optimization problem $\min_{\boldsymbol{\beta}} \sum_{i=1}^n f(\boldsymbol{\beta}; \boldsymbol{\theta}_i)$

challenge: not enough memory to store the intermediately dense feature vector β (sublinear alg.)

>1015!

- stochastic gradient descent (SGD) $\beta_{t+1} = \beta_t - \eta_t \mathbf{g}(\beta_t; \mathbf{\Theta}_t)$ minibatch $\mathbf{\Theta}_t = \{\theta_{t1}, \theta_{2t}, \dots, \theta_{tb}\}$ with the SGD term defined as $\mathbf{g}(\beta_t; \mathbf{\Theta}_t) = \sum_{i=1}^b \nabla_{\beta_t} f(\beta_t; \theta_{ti})$

Count Sketch (CS)

- data structure to compressively store the number of occurrences of many number of streaming items

- fast operations
- ADD (item, increment)
- QUERY (item)

$$\approx \text{median}(\{4, 4, 7, 9\})$$

$$\# \text{ items } (p)$$

 $m = d \times c$

frequent items (k)

all colors
memory of CS

top colors

+increment = +1

Count Sketch (CS)

random hash $h_j: \{1, 2, \ldots, p\} \to \{1, 2, \ldots, d\}$ function

- data structure to compressively store the number of occurrences

Theorem 1 Charikar et al. (2002) Count Sketch finds top-k items z_i with $\pm \varepsilon ||\mathbf{z}||_2$ error, with probability at least $1 - \delta$, in space $\mathcal{O}(\log(\frac{p}{\delta})(k + \frac{\|\mathbf{z}^{tail}\|_2^2}{(\varepsilon\zeta)^2}))$, where $\|\mathbf{z}^{tail}\|_2^2 = \sum_{i \notin top-k} z_i^2$ is the energy of the non-top-k items and ζ is the k^{th} largest value in **z**.

- ADD (Item, Increment)
- QUERY (item)
- $\# \approx \text{median}(\{4, 4, 7, 9\})$

$$\#$$
 items (p)

all colors

$$m = d \times c$$

memory of CS

$$\#$$
 frequent items (k)

top colors

feature selection with CS

$$h_j: \{1, 2, \dots, p\} \to \{1, 2, \dots, d\}$$

feature selection with CS

feature selection with CS

$$MISSION: \boldsymbol{\beta}_{t+1}^{s} = \boldsymbol{\beta}_{t}^{s} - \eta_{t} \mathbf{g}^{s} (Query_{top-k}(\boldsymbol{\beta}_{t}^{s}); \boldsymbol{\Theta}_{t})$$

after convergence

$$h_j: \{1, 2, \dots, p\} \to \{1, 2, \dots, d\}$$

observation: sketch of noisy component of SGD in CS do not cancel out and results in memory wasted to store sketched noise

Theorem 1 Charikar et al. (2002) Count Sketch finds top-k items z_i with $\pm \varepsilon \|\mathbf{z}\|_2$ error, with probability at least $1 - \delta$, in space $\mathcal{O}(\log(\frac{p}{\delta})(k + \frac{\|\mathbf{z}^{tail}\|_2^2}{(\varepsilon\zeta)^2}))$, where $\|\mathbf{z}^{tail}\|_2^2 = \sum_{i \notin top-k} z_i^2$ is the energy of the non-top-k items and ζ is the k^{th} largest value in \mathbf{z} .

idea: second order sketching

$$h_j: \{1, 2, \dots, p\} \to \{1, 2, \dots, d\}$$

$$\boldsymbol{\beta}_{t+1} = \boldsymbol{\beta}_t - \eta_t \mathbf{B}_t^{-1} \mathbf{g}(\boldsymbol{\beta}_t, \boldsymbol{\Theta}_t)$$

$$\mathbf{B}_t = \nabla_{\boldsymbol{\beta}_t}^2 f(\boldsymbol{\beta}_t, \boldsymbol{\Theta}_t) \in \mathbb{R}^{p \times p}$$

- more comp. cost per iteration
- less noisy gradient
- memory-accuracy tradeoff

question: how to compute/ store the Hessian?

limited-memory BFGS

$$\boldsymbol{\beta}_{t+1} = \boldsymbol{\beta}_t - \eta_t \mathbf{B}_t^{-1} \mathbf{g}(\boldsymbol{\beta}_t, \boldsymbol{\Theta}_t)$$

$$\mathbf{B}_t = \nabla^2_{\boldsymbol{\beta}_t} f(\boldsymbol{\beta}_t, \boldsymbol{\Theta}_t) \in \mathbb{R}^{p \times p}$$

 $h_j: \{1, 2, \dots, p\} \to \{1, 2, \dots, c\}$

Algorithm 1 Limited-memory BFGS

Input: $\mathbf{g}(\hat{\boldsymbol{\beta}}_t, \boldsymbol{\Theta}_t)$ and $\{\mathbf{s}_i, \mathbf{r}_i\}_{i=t-\tau+1}^t$

1.
$$\rho_t = \frac{1}{\mathbf{r}_t^T \mathbf{s}_t}$$
.

2. $\mathbf{q}_t = \mathbf{g}(\hat{\boldsymbol{\beta}}_t, \boldsymbol{\Theta}_t),$

for
$$i = t$$
 to $t - \tau + 1$:

$$\alpha_i = \rho_i \mathbf{s}_i^T \mathbf{q}_i,$$

 $\mathbf{q}_{i-1} = \mathbf{q}_i - \alpha_i \mathbf{r}_i.$

3.
$$\mathbf{z}_{t-\tau} = \frac{\mathbf{r}_t^T \mathbf{s}_t}{\mathbf{r}_t^T \mathbf{r}_t} \mathbf{q}_{t-\tau}$$

for
$$i = t - \tau + 1$$
 to t

$$\gamma_i = \rho_i \mathbf{r}_i^T \mathbf{z}_i$$
.

$$\mathbf{z}_i = \mathbf{z}_{i-1} + \mathbf{s}_i(\alpha_i - \gamma_i).$$

Return: \mathbf{z}_t

more comp. cost per iteration

less noisy gradlent

- memory-accuracy tradeoff

- no need to store/compute inverse Hessian

approximate $\mathbf{B}_t^{-1}\mathbf{g}(.)$ using gradients from last few τ iterations

= item

index = i

 $\eta_t \mathbf{B}_t^{-1} \mathbf{g}(.)$

BEAR algorithm: sketch LBFGS gradients using CS

find the descent

Algorithm 2 BEAR

direction using LBFGS

Initialize: t = 0, Count Sketch $\beta_{t=0}^s = 0$, top-k heap. and update CS while stopping criteria not satisfied **do**

- 1. Sample b independent data points in a minibatch $\Theta_t = \{\theta_{t1}, \dots, \theta_{tb}\}$.
- 2. Find the active set A_t .
- 3. QUERY the feature weights in $A_t \cap \text{top-}k$ from Count Sketch $\beta_t = query(\beta_t^s)$.
- 4. Compute stochastic gradient $\mathbf{g}(\boldsymbol{\beta}_t, \boldsymbol{\Theta}_t)$.
- 5. Compute the descent direction with Alg. 1 $\mathbf{z}_t = \text{LBFGS}(\mathbf{g}(\boldsymbol{\beta}_t, \boldsymbol{\Theta}_t), \{\mathbf{s}_i, \mathbf{r}_i\}_{i=t-\tau+1}^t)$.
- 6. ADD the sketch of \mathbf{z}_t at the active set $\hat{\mathbf{z}}_t = \mathbf{z}_t^{A_t}$ to Count Sketch $\boldsymbol{\beta}_{t+1}^s \coloneqq \boldsymbol{\beta}_t^s \eta_t \hat{\mathbf{z}}_t^s$.
- 7. QUERY the features weights in $A_t \cap \text{top-}k$ from Count Sketch $\beta_{t+1} = query(\beta_{t+1}^s)$.
- 8. Compute stochastic gradient $\mathbf{g}(\boldsymbol{\beta}_{t+1}, \boldsymbol{\Theta}_t)$.
- 9. Set $\mathbf{s}_{t+1} = \boldsymbol{\beta}_{t+1} \boldsymbol{\beta}_t$, and $\mathbf{r}_{t+1} = \mathbf{g}(\boldsymbol{\beta}_{t+1}, \boldsymbol{\Theta}_t) \mathbf{g}(\boldsymbol{\beta}_t, \boldsymbol{\Theta}_t)$.
- 10. Update the top-k heap.
- 11. t = t + 1.

end while

Return: The top-k heavy-hitters in Count Sketch.

query CS and store the gradient and feature difference vectors

convergence

Theorem 2 Let $f(\cdot)$ and the step sizes η_t satisfy the assumptions above. Let the size of Count Sketch be $m = \theta(\varepsilon^{-2} \log 1/\delta)$ with number of hashes $d = \theta(\varepsilon^{-1} \log 1/\delta)$ for $\varepsilon, \delta > 0$. Then, the Euclidean distance between updates β_t^s in the BEAR algorithm and the sketch of the solution of problem (1) converges to zero with probability $1 - \delta$, that is,

$$\mathbb{P}(\lim_{t \to \infty} \|\boldsymbol{\beta}_t^s - \boldsymbol{\beta}^{s*}\|^2 = 0) = 1 - \delta,$$
(2)

where the probability is over the random realizations of random samples $\{\Theta_t\}_{t=0}^{\infty}$. Furthermore, for the specific step size $\eta_t = \eta_0/(t+T_0)$ for some constants η_0 and T_0 , the model parameters at iteration t satisfy

$$\mathbb{E}_{\mathbf{\Theta}}[f(\boldsymbol{\beta}_t^s, \mathbf{\Theta}) - \mathbb{E}[f(\boldsymbol{\beta}^{s*}, \mathbf{\Theta})] \le \frac{C_0}{T_0 + t},\tag{3}$$

with probability $1 - \delta$. Here, C_0 is a constant depending on the parameters of the sketching scheme, the above assumptions, and the objective function.

simulations

$$\mathbf{x}_{i} \sim \mathcal{N}(0, 1)$$

$$y_{i} = \mathbf{x}_{i} \boldsymbol{\beta}^{*}$$

$$\boldsymbol{\beta}^{*} : k - \text{sparse}$$

$$\mathbf{CF} = \frac{p}{\text{size of CS}}$$

$$p = 1000$$

$$n = 900$$

real-world experiments

Data set	Dim (p)	#Train (n)	#Test	Size	#Act.
RCV1	47,236	20,242	677,399	1.2GB	73
Webspam	16,609,143	280,000	70,000	25GB	3730
DNA	16,777,216	600,000	600,000	1.5GB	89
KDD 2012	54,686,452	119,705,032	29,934,073	22GB	12

summary and future directions

- adaptively learn the hashing scheme in the Count Sketch based on the stochastic gradients
- efficient training of massively large nonlinear models using LBFGS + sketching (Transforms, etc.)
- distributed learning/analysis using LBFGS + sketching explore communication-computation tradeoff

Thanks!

- find the paper at https://arxiv.org/abs/2010.13829
- find the code at https://github.com/BEAR-algorithm/BEAR