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big and high dimensional data in everyday life

facebook.

- web services

- language processing
- networking

- genomics/proteomics
- health-care

- critical need for scalable algorithms to
extract important features from the data
- limited computing resource
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problem setup
>1015!

1 data points (8,)", = (x;y:)l" A
living in ultra-high dimensional feature space x; € R” (p > n)
goal: find a small subset of features best explains the output

- k-sparse feature vector3" € R challenge: not enough memory to

loss function f(3,0) : RP — R store the intermediately dense
feature vector 3 (sublinear alg.)

- optimization problem mi - 0,
p p m[;n;f(ﬂ )

- stochastic gradient descent (SGD) B;.1 = B; — m:8(8;; ©O¢)
minibatch O, = {Htly Hgt, Cee th} b
with the SGD term defined as g(3,;®,) = Z Vg, [(By;04)
1=1



Count Sketch (CS) andomhash . 1 o pl 5 (1,2, d)

function

- data structure to compressively
store the number of occurrences
of many number of streaming items

- fast Operations +increment = +1
. galéé{l:(e?; in)C emen # items (p)  #all colors
. item
m=d X c memory of CS

# oy ~ median({4,4,7,9}) # frequent items (k)  # top colors




Theorem 1 Charikar et al. (2002) Count Sketch finds top-k items z; with +¢||z||2 error, with

[zt

probability at least 1 — 6, in space O(log(%)(k 20)? ), where ||z!%||5 = D idtop—k 2% is the

(

energy of the non-top-k items and ( is the k™ largest value in z.



feature selection with CS hi:{1,2,...,p} = {1,2,...,d}

/Bt+1 = B, — Utg(ﬁtQ @t) ha(inc )

|
l
|
h+( indi)1,
INnd | [
+increment = —1;g; ()
o # items (p)  # all features
| m=d X c memory of CS
— | # frequent items (k)

# top features

= Increment
I I i

index=i ; =item (3 ( . )




feature selection with CS hi:{1,2,...,p} = {1,2,...,d}

MISSION : B/, = B;— i g 1
me® (Query,,, 1(835): ©) afina)

|
l
|
h+( indi)1,
INnd | [
+increment = —1;g; ()
o # items (p)  # all features
| m=d X c memory of CS
— | # frequent items (k)

# top features

= Increment
I I i

Aghazadeh, Shrivastava, Baraniuk, et al. ICML (2018) PMLR: 80-88. ndex=1/) =fem n:g(.)



feature selection with CS

MISSION : B/, = B;{—
mg” (Queryyo, 1 (87); O1)

after convergence

content of CS ground truth
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energy of the non-top-k items and  is the k™ largest value in z.

Aghazadeh, Gupta, Ramchandran et al. MSML (2021)



idea: second order sketching hi{1,2,...

Bi1 = B, —n:B; 'g(8,,0:) g1

B, = V3 f(B;,0,) € RP*P

- more comp. cost per iteration
- less noisy gradient
- memory-accuracy tradeoft

question: how to compute/
store the Hessian?

= Increment

. . . —1
Aghazadeh, Gupta, Ramchandran et al. MSML (2021) ndex=1,) =ftem ntBt g()



limited-memory BFGS hy:{1,2,...,py = {1,2,...,¢c}

I6 t+1 — /6 t ntBt_ 1g(,6t, @t) / \--L Algorithm 1 Limited-memory BtFGS
hj,,(ind i) q {nlzut g(ﬂt ©:) and {s;, r;};; .4
2 X t rt St
B: = V3 f(B:, ©1) € RP7Y o -
T fortc=ttot — 7+ 1: L
) —T i = pis; Qi -4
h'l( ind |)1, 7 qQi—1 = q; — o;T;.
| h‘y‘_—if— 3. Zt—r = Stflt T
ind i | fori—t T—l—ltot
— ‘ Vi = pit; Zi.
1 VIR d Ret z; = Z;i—1 + si(o; — vi).
eturn: z;

approximate B; ‘g(.) using
gradients from last few
T Iterations

- more comp. cost per iteration
- less noisy gradient
- memory-accuracy tradeoft

- no need to store/compute inverse Hessian

= Increment

. . . —1
Aghazadeh, Gupta, Ramchandran et al. MSML (2021) ndex=1,) =ftem ntBt g()



BEAR algorithm: sketch LBFGS gradients using CS

find the descent

Algorithm 2 BEAR direction using LBFGS

Initialize: ¢ = 0, Count Sketch B;_, = 0, top-k heap. 5n1d update CS
while stopping criteria not satisfied do

1. Sample b independent data points in a minibatch ©; = {041, ...,04}.

. Find the active set Ay.

. QUERY the feature weights in .A; N top-k from Count Sketch B; = query(B;).

. Compute stochastic gradient g(8¢,0.). |
. Compute the descent direction with Alg. 1 z; = LBFGS(g(8:,0:) , {sz, rz} P +1)
.ADD the sketch of z; at the actlve set Zt — zt““t to Count Sketch ﬂt L1 = ,Bt ntzt |
.QUERY the features welg S in A, n top 'k from Count Sketch / Bii1 = query B p1).
. Compute stochastic gradient g(8¢.1,0).

'; 9.Setsi 1 =Piy1 —Pr,andri g = g(Bi11,0:) —g(B81,O¢).

10. Update the top-k hea B
11 tEH 1 > > query CS and stOre the

end while gradient and feature
Return: The top-£ heavy-hitters in Count Sketch. difference vectors

00 \1 SR N w ®
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convergence

Theorem 2 Let f(-) and the step sizes 1, satisfy the assumptions above. Let the size of Count Sketch
be m = 0(c*log 1/68) with number of hashes d = 0(¢~'log1/68) for €,8 > 0. Then, the Euclidean
distance between updates 7 in the BEAR algorithm and the sketch of the solution of problem (1)
converges to zero with probability 1 — o, that is,

<hm uﬂt 68*H2 >— -4, @

where the probability is over the random realizations of random samples {©.}:°,. Furthermore,

for the specific step size ny = 19/ (t + 1y) for some constants ng and Ty, the model parameters at

iteration t satisfy

, [f(ﬂt, ) - 6 o)< 7 3)

with probability 1 — 0. Here Co IS a COnstant dependmg on the paramez‘ers of the sketching scheme,
the above assumptions, and the objective function.
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simulations
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real-world experiments

Classification

Feature selection
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Data set Dim (p) #Train (n) #Test Size | #Act.
RCV1 47,236 20,242 677,399 1.2GB 73
Webspam | 16,609,143 280,000 70,000 25GB | 3730
DNA 16,777,216 600,000 600,000 1.5GB 89
KDD 2012 | 54,686,452 | 119,705,032 | 29,934,073 | 22GB 12
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summary and future directions

- adaptively learn the hashing scheme in the Count Sketch
based on the stochastic gradients

- efficient training of massively large nonlinear models using
LBFGS + sketching (Transforms, etc.)

- distributed learning/analysis using LBFGS + sketching explore
communication-computation tradeoftf

Thanks!

- find the paper at https://arxiv.org/abs/2010.13829
- find the code at https://github.com/BEAR-algorithm/BEAR
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