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Robustness of the kNN Classifier
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Theorem. [Wang, Jha, and Chaudhuri (2018)] For k = Ω(
√
dn log n), where d is the data dimension

and n is the sample size, then the robustness region of kNN classifier approaches that of the Bayes
Optimal classifier in the large sample limit.



Semi-supervised Laplace Learning

kNN did not fully utilize the underlying geometry of the data, can geometry of the data improve
robustness of the classifier?

We consider semi-supervised Laplace learning, which can be formulated as: Let ΩN := {x}Ni=1 ⊂ Rd be
a set of feature vectors with a subset of ΓN := {xi}i∈ZN ⊂ [N], and we denote the label be
`N(x) := `|ΓN . We can construct a graph WN := (Wx,y)x,y∈ΩN . We solve the following constrained
minimization problem to get the prediction

min
u(x)

∑
x,y∈ΩN

Wx,y(u(x)− u(y))2 subject to u(x) = `N(x).

In particular, we consider the Geometric Random graphs, in which Wx,y = Wε,x,y = ηε(|x− y|) and
ηε = 1

εd
η(·/ε) and η : [0,+∞)→ [0,+∞) is non-increasing, positive, η(t) ≥ 1 for all t ≤ 1 and

η(t) = 0 for all t ≥ 2. In addition, wither η is Lipschitz continuous, or η(t) = 1t≤1.

How Laplace learning improves robustness of the classifier?



Theoretical Result

δ-Robustness Radius Definition: Let Dn be a dataset of n feature vectors of which the fraction
β ∈ [0, 1] are labelled, D̂n be any dataset built by perturbing the feature vectors at most r (but keping
the same labels), and Dn 7→ u(·;Dn) a solution to the semi-supervised learning problem. The
δ-robustness radius Rδ(Dn) is the largest r such that

sup
x
|u(x ;Dn)− u(x̂ ; D̂n| ≤ δ.

Approximate Statement of Theorem: Let u be the Laplacian Regularisation solution. For ε small
enough and β ∈ [ε2, 1] there exists constants C > c > 0 such that for all r ∈ (0, c

√
βε) with

probability 1− Cne−cnβεd the δ-robustness radius is greater than r for

δ =
Cε√
β

log

(√
β

ε

)
.

Classifier k Assumption on r Reference

kNN Ω(
√
n log n) None Wang, Jha, and Chaudhuri (2018)

GL Ω
(

log n
1−β

)
r ≤ c

√
1− β

(
log n

n(1−β)

) 1
d This Work



Numerical Results
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Figure: Robust accuracies of GL vs. kNN classifiers for three datasets classification under WB attacks
with different maximum perturbation measured in `2-norm. GL-based classifiers are consistently more
accurate than kNN-based classifiers.


