
Implicit Form Neural Network for Learning Scalar Hyperbolic
Conservation Laws

Xiaoping Zhang 1, Tao Cheng 1 and Lili Ju 2

1School of Mathematics and Statistics, Wuhan University
2Department of Mathematics, University of South Carolina

Mathematical and Scientific Machine Learning, 2021
August 19, 2021

ZXP (WHU) IFNN 1 / 20

Introduction

In recent years, deep learning techniques have been applied to mathematical and
scientific computing problems, and a large number of excellent research works on learning
solutions of PDEs have emerged.

The first attempt of solving PDEs using NNs can be traced back at least to the late
last century. 1. However, due to the limitation of computational resource back that
time, it unfortunately did not attract much attention of researchers.

Currently, there are two major ways to use deep learning for numerical solutions of
PDEs:

1 Deep Ritz method 2 and its variants Convert the PDEs into their equivalent
variational forms and then solve them using NNs

2 PINN 3and its variants Use NNs to directly deal with the original PDEs

1Lee and Kang, J. Comput. Phys. 1990 .
2E and Yu, Comm. Math. Stat. 2018
3Raissi et al., J. Comput. Phys. 2019

ZXP (WHU) IFNN 2 / 20

Introduction

Scalar hyperbolic conservation law
Let x = (x1, · · · , xd)

T ∈ Rd and f = (f1, · · · , fd)T ∈ Rd, the scalar hyperbolic
conservation law can be formulated as follows :{

ut +∇ · f(u) = 0, (x, t) ∈ Rd × (0, T],

u(x, 0) = ϕ(x), x ∈ Rd.

(1a)
(1b)

where u is an unknown function defined in Rd.

Remark
Although the deep Ritz method and PINN have achieved great success, they still exhibit
poor performance in handling problems with strong discontinuous solutions, such as
hyperbolic conservation laws.

ZXP (WHU) IFNN 3 / 20

Introduction

ϵ = 10−2 ϵ = 10−3 ϵ = 0

Figure: Reference solution and predicted solution of PINN for Burgers’ equation
ut + uux − ϵuxx = 0 when t = 0.5

ZXP (WHU) IFNN 4 / 20

IFNN

Theorem
An implicit form for the solution of (1) can be formulated as

u = ϕ(x− f ′(u)t), (2)

where f ′ denotes the velocity

f ′(u) = (f ′
1(u), · · · , f ′

d(u))
T . (3)

Contribution
A fully-connected neural network ’IFNN’ is proposed to learn the solution of (1) by using
the loss function based on the implicit form (2) instead of the original equation (1).

ZXP (WHU) IFNN 5 / 20

IFNN

Network model with parameters Θ = {W k, bk}Dk=1.

u(x, t; Θ) = (ℓD ◦ σ ◦ ℓD−1 · · · ◦ σ ◦ ℓ1)(x, t), ℓk(v
k−1) = W kvk−1 + bk. (4)

x1

x2

t

...
...

...
u

Residual block
vk = vk−1 + σ ◦ ℓk(vk−1)

vk−1 hidden layer activationactivation + vk

ZXP (WHU) IFNN 6 / 20

IFNN

Sampling stragegy
To train the network (4), we need a set of sampling points with respect to (x, t), and the
Latin Hypercubic Sampling (LHS) is used to generate the point set D, and then split it
into three parts:

DIC = D ∩ (Ω× {0}),
DBC = D ∩ (∂Ω× (0, T]),
DIM = D\(DIC ∪ DBC).

ZXP (WHU) IFNN 7 / 20

IFNN

Loss function

L(Θ) = LIM(Θ) + λ1LIC(Θ) + λ2LBC(Θ), (5)
where

LIM(Θ) =
1

|DIM|
∑

(x,t)∈DIM

[
u(x, t; Θ)− ϕ(x− f ′(u)t)

]2
,

LIC(Θ) =
1

|DIC|
∑

(x,t)∈DIC

[u(x, t; Θ)− ϕ(x)]2.

LBC(Θ) =
1

|DBC|

∑
(x,t)∈DBC

[u(x, t; Θ)− gd(x, t)]
2 , Dirchlet B.C.

∑
(x,t)∈DBC

[
∂u

∂n
(x, t; Θ)− gn(x, t)

]2

, Neumann B.C.∑
(x,t)∈DBC

[
u(x, t; Θ)− u(x′, t; Θ)

]2
, Periodic B.C.

(6)

(7)

(8)

where x′ is the symmetric point of x in the opposite boundary side of Ω.

ZXP (WHU) IFNN 8 / 20

Numerical Experiments

Implementation Detail
Our IFNN is implemented using PyTorch and we use 6 hidden layers with 20 neurons
per each hidden layer for all tests.
Adam optimizer is used to train the network and the number of epochs is set as
25000. The learning rate is initially set to 0.001, and then adjusted with a decay rate
of 0.7 per 3000 epochs.
The hyperparamters λ1 and λ2 in the loss function are both chosen as 1.

ZXP (WHU) IFNN 9 / 20

Numerical Experiments - 1D inviscid Burgers’ equation with shock wave (I)

IC: ϕ(x) =

{
1, x ⩽ 0

0, x > 0
, Dirichlet BC: u(−1, t) = 1

Model
Activation

tanh sin ReLU

PINN 1.17 × 10−1 1.54 × 10−1 1.05 × 100

IFNN 2.53 × 10−4 6.63 × 10−2 8.01 × 10−2

Table: L2 errors of IFNN with different activation functions

#l
#n 10 20 30

2 5.76 × 10−2 2.33 × 10−2 9.23 × 10−3

4 8.91 × 10−3 2.72 × 10−3 6.71 × 10−4

6 2.97 × 10−3 2.50 × 10−4 2.32 × 10−4

Table: L2 errors of IFNN with different number of hidden layers (#l) and neurons (#n).

Figure: The effect of the size of training set on the prediction accuracy of IFNN.
ZXP (WHU) IFNN 10 / 20

Numerical Experiments - 1D inviscid Burgers’ equation with shock wave (I)

IC: ϕ(x) =

{
1, x ⩽ 0

0, x > 0
, Dirichlet BC: u(−1, t) = 1

(a) reference solution (b) predict solution by IFNN (c) predict solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN

ZXP (WHU) IFNN 11 / 20

Numerical Experiments -1D inviscid Burgers’ equation with shock wave (II)

IC: ϕ(x) =

2, x ⩽ −1/2,

1, −1/2 < x ≤ 1/2,

0, x > 1/2

, Neumann BC: u′(−1, t) = u′(3/2, t) = 0

(a) reference solution (b) predict solution by IFNN (c) predict solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN

ZXP (WHU) IFNN 12 / 20

Numerical Experiments - 1D inviscid Burgers’ equation with rarefraction wave

IC: ϕ(x) =

{
0, x ≤ 0

1, x > 0
, Dirichlet BC: u(−1, t) = 0

(a) reference solution (b) predict solution by IFNN (c) predict solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN

ZXP (WHU) IFNN 13 / 20

Numerical Experiments - 1D inviscid Burgers’ equation with sinusoidal initial data
IC: ϕ(x) = sin(2πx), Periodic BC: u(0, t) = u(1, t)

(a) reference solution (b) predicted solution by IFNN (c) predicted solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure: Comparison results between reference and predicted solutions by IFNN and PINN

ZXP (WHU) IFNN 14 / 20

Numerical Experiments -2D inviscid Burgers’ equation with shock wave

(a) Reference solution

(b) Predicted solution by IFNN

Figure: Comparison results between the reference solution and the predicted solution by IFNN
ZXP (WHU) IFNN 15 / 20

Numerical Experiments
LWR model for the traffic flow problem

LWR model
By choosing d = 1 and f(u) = u(1− u) in (1) we get the Lighthill-Whitham-Richards
(LWR) model {

ut + [u(1− u)]x = 0, x ∈ R, t > 0,
u(x, 0) = ϕ(x), x ∈ R, (9)

where u represents the density of cars on a road and u ∈ [0, 1]. When u = 0, there are no
car on the road, and the road is completely full when u = 1.

ZXP (WHU) IFNN 16 / 20

Numerical Experiments -LWR model for the traffic flow problem(traffic jams)

IC: ϕ(x) =

{
1/2, x < 0,

1, x > 0,
, Dirichlet BC: u(−1/2, t) = 1/2, t ∈ (0, 1]

(a) Reference solution (b) Predicted solution by IFNN (c) Predicted solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure: Comparison results between reference solution and predicted solutions by IFNN and PINN

ZXP (WHU) IFNN 17 / 20

Numerical Experiments -LWR model for the traffic flow problem(traffic light turning green)

IC: ϕ(x) =

{
1, x < 0,
0, x > 0,

, Dirichlet BC: u(−1, t) = 1

(a) Reference solution (b) Predicted solution by IFNN (c) Predicted solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure: Comparison results between reference solution and predicted solutions by IFNN and PINN

ZXP (WHU) IFNN 18 / 20

Conclusion remarks

Conclusion
A fully-connected neural network with skip connection, “IFNN”, is proposed for
solving the scalar conservation laws.
The essential difference between our IFNN and PINN lies the choice of the loss
function. IFNN takes the implicit form of the solution to formulate one of the
essential terms for the loss function while PINN directly uses the residual of the
original PDE.
Extensive numerical experiments in 1D and 2D show that our IFNN is superior to
PINN in capturing shock waves while their performance are comparable for the
continuous solution cases.

Pros and Cons
Pros
the training of IFNN is much easier than that of PINN since it need not to use
automatic differentiation for calculations of differential operators
Cons
IFNN requires the target PDEs to have the specific implicit form for their solutions,
thus the scope of its feasibility may not be as wide as PINN

ZXP (WHU) IFNN 19 / 20

Thanks for your attention!

ZXP (WHU) IFNN 20 / 20

	Introduction
	Implicit form neural network for solving scalar hyperbolic conservation laws
	Numerical Experiments
	1D inviscid Burgers' equation
	LWR model for the traffic flow problem

	Conclusion remarks

