
Hessian-Amended Random Perturbation (HARP)
Using Noisy Zeroth-Order Oracle

Jingyi Zhu

MSML21: Mathematical and Scientific Machine Learning
Session 1: Optimization and Algorithms

August 16, 2021

J. Zhu (Alibaba Inc.) HARP 1 / 12



Introduction Problem Setup

Minimization Using Few Zeroth-Order Queries

min
θ∈Rd

L(θ) ≡ Eω∼P[`(θ,ω)] , (1)

• stochastic: evaluation of L(θ) is corrupted by noise
• limited-resource: collecting `(·,ω) is expensive

Stochastic Approximation (SA) Algorithms

1st-order : θ̂k+1 = θ̂k − akĝk(θ̂k) . (2)

w/ ak is stepsize. We use gradient estimator using two ZO queries:

ĝk(θ̂k) = `(θ̂k + ck∆k,ω+
k )− `(θ̂k − ck∆k,ω−k )

2ck
mk(∆k) . (3)

w/ ck is differencing magnitude, ∆k is perturbation, mk(·) : Rd 7→ Rd.
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Introduction Prior Works for Gradient Estimation

RDSA (random direction) [Erm69, Erm83]
∆k ∼ Unif(S) and mk(∆k) = d∆k

SPSA (simultaneous perturbation) [Spa92]
∆k ∼ [Unif{−1, 1}]d, mk(∆k) = ∆k

SFSA (smoothed functional) [KO72]
∆k ∼ N (0, I) and mk(∆k) = ∆k

Randomized FDSA (finite-difference)—effective as cyclic scheme
∆k ∼ Unif{e1, · · · , ed} and mk(∆k) = d∆k

What if ∆k has zero-mean and Σ−1
k -covariance for Σk � 0?

• Data-driven Σk can be Fk-measurable random variable
• User-specified Σk can use domain knowledge

J. Zhu (Alibaba Inc.) HARP 3 / 12



Non-Isotropic Σk Motivation

Scaling/Stepsize

Minimize L(θ) = 100θ2
1 + θ2

2, with θ̂ = [1, 1]T and c = 0.1.
• SPSA generates [1, 1]T , [1,−1]T , [−1, 1]T and [−1,−1]T equally

likely. E∆[ĝ(θ̂)] equals true gradient g(θ̂) = [100, 1]T . But the
variance is in the order of 104 assuming noise-free ZO queries.
• HARP draws ∆ from 0-mean and Σ−1-covariance distribution with

Σ = Ĥ(θ̂). Still unbiased, but covariance matrix norm is 2× 102.

Correlation/Direction
• Σ = I has zero off-diagonal elements implies that each component

of ∆ is independent.
• Say L(θ) = 100θ2

1 + θ2
2 + θ1θ2 with same θ̂ and c. The covariance

magnitude of SPSA gradient estimator is around 4× 104 and that of
HARP is 8× 102.
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HARP Benefits and Guarantee

HARP handles scaling & correlation
∆k follows a dist. w/ mean 0 and cov. Ĥ−1

k , and mk(∆k) = Ĥk∆k

Theoretical Guarantee
Root-mean-squared error E[||θ̂k − θ∗||2]1/2 is smaller when Σk = Ĥk

than when Σk = I for ill-conditioned problem.

• Expectation of estimation error goes to zero at the samea rate.
• Variance gets smaller while using Σk = Ĥk.
ak−1/3 when ω+

k and ω−
k are independent and identically distributed (IID).

k−1/2 when ω+
k = ω−

k , referred to as common random number (CRN).
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HARP cont’d Implementation

Hessian can be estimated [Spa00, Spa09] provides principled way to
estimate Hessian using four loss function evaluations. [Zhu21] proposes
other forms that uses two or more.
However, computing issue persists, though [ZWS19] reduces per-iteration
FLOPs from O(d3) to O(d2). Not comparable with O(d) for generic
first-order methods.
Feed Hessian estimate into both Σk

1 generate ∆k so that it has a mean of 0 and a covariance Ĥ−1
k

2 collect two noisy losses and estimate ĝk using
mk(∆k)

[
`(θ̂k + ck∆k)− `(θ̂k − ck∆k)

]
/(2ck)

3 may collect additional queries and estimate Ĥk
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Numerical Study Skew-Quartic Function

Skew-quartic function is ill-conditioned: one large eigenvalues, and
remaining eigenvalues are close to zero.

Figure: Performance of SPSA and HARP in terms of normalized distance
||θ̂k−θ∗||/||θ̂0−θ∗|| averaged across 25 independent replicates, and both
algorithms use four ZO queries per iteration. The underlying loss function is the
skew-quartic function with d = 20, and the noisy observation is corrupted by a
N (0, 1) noise.
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Numerical Study Image Attack

We consider generating adversarial perturbation universally for I > 1
images [CZS+17, CLC+18]:

minθ L(θ) = κ||θ||22︸ ︷︷ ︸
≡L1(θ)

+ 1
I

I∑
i=1

loss(ζi + θ)︸ ︷︷ ︸
≡L2(θ)

,

s.t. (ζi + θ) ∈ [−0.5, 0.5]d ,∀i ,

(4)

where the constraint is to normalize the resulting pixels within
[−0.5, 0.5]d, and loss(·) : Rd 7→ R on each image in (4) follows from
[CW17]. Note that L2(θ) = 0 when all the selected images are
successfully attacked. The noisy loss observation `(θ,ω) in (1) is

`(θ,ω) = κ||θ||22 + 1
J

J∑
j=1

loss(ζij(ω) + θ) , (5)

for J ≤ I, and the J indexes {i1(ω), · · · , iJ(ω)} are i.i.d. uniformly
drawn from {1, · · · , I} (without replacement).
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Numerical Study Image Attack

Algo E[L(θ̂K)] {Var[L(θ̂K)]}
1
2 E[L2(θ̂K)]

AdaMM 185.96 16.88 40.95
HARP 138.22 18 12.50

Table: Performance of ZO-AdaMM and HARP in terms of loss after
K = 1000 iterations averaged across 25 independent replicates. The loss
function L(·) is the sum of the magnitude cost L1(·) and the attack loss L2(·).
Here L2(·) measures the attack loss on I = 100 images of the letter one, and its
noisy query is evaluated using a batch-size of one. A close-to-zero L2(·) loss is
equivalent to a close-to-one attack success rate.

Algo E[L(θ̂K)] {Var[L(θ̂K)]}
1
2 E[L2(θ̂K)]

AdaMM 56.95 6.89 11.75
HARP 18.46 1.37 0.13

Table: Here L2(·) measures the attack loss on I = 10 images of the letter three,
and its ZO query is noise-free.
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Summary

Summary
We propose HARP that feeds second-order approximation to Σk, less
sensitive to ill-conditioning.

• framework allowing Fk-measurable perturbation covariance
• second-order info not only gets into parameter update but also

search scaling/direction in HARP
• asym. rate of convergence remains the same, yet RMS is smaller

Future Work
• this framework can be generalized to scenario where 1st-order oracles

are available—Hessian can be estimated using three noisy gradients
• other user-specified structure for Σk
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