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Setting

I There are many methods to solve ‘low-dimensional’ PDEs, but few for very
high-dimensional problems (many body quantum systems in physics or computational
chemistry, applications in finance, . . . )

I Neural networks have been very successful in beating the ‘curse of dimensionality’ in other
fields and are quickly becoming more popular in solving high-dimensional PDEs as well

I E-Han-Jentzen: Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations, 2017

I E-Yu: The Deep Ritz method: A deep learning-based numerical algorithm for solving variational
problems, 2017

I Han-Jentzen-E: Solving high-dimensional partial differential equations using deep learning, 2017
I . . .

I It can be proved rigorously in some cases that certain classes of neural networks can
approximate the solution of a PDE without the CoD.

I Can we show that solutions to PDEs lie in certain ‘simple’ function spaces, in which
elements can be approximated by neural network models without the CoD?

1. Regularity of solutions
2. Approximation of elements in function space
3. Numerical method
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Barron spaces

Definition
A function is called a Barron function if there exists a probability distribution π such that

f (x) = E(a,w ,b)∼π
[
aσ(wT x + b)

]
, E(a,w ,b)∼π

[
|a|(|w |+ |b|)

]
<∞.

Theorem (E-Ma-Wu ’17)
If P is a probability distribution on Rd and f : Rd → R is a Barron function, then for every
m ∈ N there exist weights (ai ,wi , bi )

m
i=1 such that∥∥∥∥∥f −

m∑
i=1

aiσ(wT
i x + bi )

∥∥∥∥∥
L2(P)

≤ ‖f ‖B√
m

√ˆ
Rd

1 + |x |2 dP.

Proof.
Monte-Carlo integration.
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Screened Poisson equation

Theorem
Assume that f ∈ B and

(−∆ + λ2)u = f

for λ > 0. Then ‖u‖B ≤ λ−2 ‖f ‖B if σ has finite limits at ±∞ and

‖u‖B ≤
[
λ−2 + 2λ−3

]
‖f ‖B.

if σ = ReLU.

Proof.
Convolution with the 3d Green’s function G (x) = e−λ|x|

4π |x| . Use that Barron functions are

superpositions of 1d profiles.
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Heat equation

Consider {
ut −∆u = 0 t > 0

u = u0 t > 0

With u0(x) = E(a,w ,b)

[
aσ(wT x + b)

]
. Then

u(t, x) =
1

(4π)d/2
E(a,w ,b)

[ˆ
Rd

exp
(
− y2

)
aσ
(
wT
(
x −
√
t y
)

+ b
)
dy

]
is a Barron function

1. in x and
√
t with norm ‖u‖B ≤ 2 ‖f ‖B.

2. in x with Barron norm ‖u(t, ·)‖B ≤ 2(1 +
√
t) ‖u‖B for fixed t > 0.

Remark
Only the second estimate carries over to the inhomogeneous heat equation as

‖uinhom(t, ·)‖B ≤ C
[
1 + t3/2

]
sup

0<s<t
‖f (s, ·)‖B.

5 / 8



Viscous Hamilton-Jacobi equation

Consider {
ut −∆u = |∇u|2 t > 0

u = u0 t = 0
,

{
vt −∆v = 0 t > 0

v = exp(u0) t = 0.

Then u(t, x) = log
(
v(t, x)

)
.

1. On bounded intervals, we can represent exp : (−∞,R]→ R and log : [ε, 1/ε]→ R as
Barron functions.

2. If f = A ◦ σ ◦W and g = Ã ◦ σ ◦ W̃ are finite two-layer networks, their composition

f ◦ g = A ◦ σ ◦
(
W ◦ Ã

)
◦ σ ◦ W̃

is a three-layer network, since the composition of linear maps is linear.
3. Similarly, we can write u = φ ◦ exp ◦u0 where φ is a Barron function which includes the

logarithm and the convolution with the heat kernel.
4. In a function space W3 for three-layer neural networks (the space of ‘tree-like’ functions),

the estimate

‖u‖W3 ≤ exp

(
sup
x∈Rd

u0(x)− inf
x∈Rd

u0(x)

)
‖u0‖B

holds for bounded Barron initial data as a Barron function in
√
t, x .
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)
◦ σ ◦ W̃

is a three-layer network, since the composition of linear maps is linear.
3. Similarly, we can write u = φ ◦ exp ◦u0 where φ is a Barron function which includes the

logarithm and the convolution with the heat kernel.
4. In a function space W3 for three-layer neural networks (the space of ‘tree-like’ functions),

the estimate

‖u‖W3 ≤ exp

(
sup
x∈Rd

u0(x)− inf
x∈Rd

u0(x)

)
‖u0‖B

holds for bounded Barron initial data as a Barron function in
√
t, x .

6 / 8



Bounded domains

Assume that u solves {
−∆u = 0 x ∈ B1(0)

u = ReLU(x1) x ∈ ∂B1(0).

Then

1. If u ∈ B, it can be defined (non-uniquely) on the whole space by a representation formula
u(x) = E(w ,b)∼πσ(wT x + b).

2. The equator {x ∈ ∂B1(0) : x1 = 0} is part of the set where u is not differentiable, but the
central plane {x ∈ B1(0) : x1 = 0} is not.

3. The singular set of a Barron function is a countable union of affine subspaces of dimension
0 ≤ k ≤ d − 1 (structure theorem for Barron functions, E-W ’20).

So, if d > 2, u is not a Barron function.
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Observations

1. For translation-invariant linear PDEs, solutions often (but not always) lie in Barron space.
I Examples: Heat equation, screened Poisson equation −∆u + λu = f for λ > 0.
I Counterexample: Poisson equation, since the solution u(x) = 1

6
σ(x1)3 of −∆u = σ(x1)

grows too fast at infinity.

2. Boundary conditions break translation invariance. Even harmonic functions with ReLU
boundary values are not in Barron space.

I It is unknown whether the solution can be represented by e.g. the composition of Barron
functions.

I There are further positive results in this direction by Lu and Lu (’20, ’21) for elliptic
equations and Schrödinger eigenvalue problems with Neumann boundary condition and
spectral Barron spaces on the unit hypercube.

3. Nonlinear PDEs may need deeper networks.
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