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PUHASE RETRIEVAL !
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Recover a d-dimensional signal X* from n data points {®,,,Y,,};;_; generated as: H I

| |

Generalized Linear Model (GLM) A =0 .
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= | | ]

Real / Compl A § [BAbR X I N m
real Al Vi~ Pows (1| 7 Sty 2uXt) o€ {1 ) | LA -

(Probabilistic) channel d

with possible noise.

Sesintmatis (redieanm slex) Signal (real/complex), d-dimensional
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In ,one measures the modulus P,,:(y|z) = Pout (y||2]), €.9. noiseless Y, = 3|(‘I’X )ul?; Poisson-noise Y,, ~ Pois(A|(®X*),|%/d).
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Arises in signal processing, statistical estimation, optics, X-ray crystallography, astronomy, microscopy.. 4,

[How to solve this problem efficiently in high dimensions? n,d — oo ]

Image credits:[ Zhang&al 16]
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» SDP relaxations [Candés&al 15a&b, Waldspurger&al 15, Goldstein&al 18, ...]
Computationally heavy /

Spectral methods
Need informed initialization P

« Non-convex optimization procedures [ Netrapalli&al 15, Candes&al 15¢, .. >

« Approximate Message-Passing [Barbier&al 19, AM&al 20 ] ) T 81115, s iRl 9]
onaellica , LUOGOQ , yuaejasa o



CONSTRUCTION OF SPECTRAL METHODS

The matrix @ is i.e. delocalized right-eigenvectors :vU, ® < U

The bulk of eigenvalues of ®'®/d converges to a distribution v(z),as n,d — oo with n/d — a > 0.

Examples: Gaussian matrices, product of Gaussians, random column-orthogonal/unitary,any & = USVT with 52 "=

Given a phase retrieval problem, we want an optimal spectral method (among all possible ones) in terms of estimation error:
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/T his talk: Three different strategies, related to the statistical physics approach to high-dimensional inference. \
« Method|:“Naive” generalization of what is known for Gaussian matrices.

« Method ll: Linearization of message-passing algorithms.

\- Method |ll : Bethe Hessian analysis from the Thouless-Anderson-Palmer free energy. /




METHOD 1

Most previous works reduced to methods of the type M(T) = é Z T(yu)®.®},

For Gaussian matrices & the optimal method in this class is given by [Té L (1) awgout(yﬂ(’ 0, ) ) ]
aussiliarn 1 _|_p ngUt y;_“O,p

* In noiseless phase retrieval one has 7¢aussian(¥) = 1 — 1/4. : T dz e=59217° |22 Poue(y,lz)
awguut(yuagag ) = 5 + 7 [E N
Jg dz e 202 Pout (Y| z)

(K = R,C)

a
« We can naively use it for all matrices: Miaive = M(Taussian)
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METH oD I‘L ‘ 0l 20 : For GLMs with rotationally-invariant matrices, the best-known
polynomuol—hme olgorl’rhm is Generalized Vector Approximate Message-Passing (G-VAMP),

l Linearization procedure

Myawe = 208 (O R 00, « _ _®'Diag({Ougou (W 0, oW /)it
h (<>\>y — — L) Diag({Ougout (U 0, p(N)/0)}) mmmp % TR, ol 0 0 /o) Vidp

o b

Mpawmp is an x n non-Hermitian matrix (complex spectrum). {1 : top eigenvector of My anp -

Similar approaches in community detection kala&al 13}, phase retrieval with unitary matrices [Ma&al 21] or spiked matrix estimation



METHOD I1I: TAP LANDSCAPE AND BETHE HESSIAN

Thouless-Anderson-Palmer approach [ TAP77] “Pure states”
(. The posterior measure of x|Y (the Gibbs measure) decomposes along pure states. > 4
-
« These pure states can be found by “tilting” the measure, imposing m; = (z;) and &7 = Var(z;): s = ®
-
They are the maxima of the free entropy of this constrained measure, as a function of (m, o). >
m
- TAP free entropy for rotationally-invariant generalized linear models derived in [AM&al 19], generalizing [ Parisi&Potters ‘95 ];

Involved but explicit!

d n \
frap(m) = sup sup extr,,cgrextry ga [ Z A —|— =t da 2F, Z |m3| =1l Z Wy * Gy — Z |lgu|* — adr) Zlnf FPy(dx)e R
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Weak-recovery impossible Weak-recovery possible
Global maximum of frap inm = 0: the uninformative m = 0 isanunstable stationary point of frap,which
“paramagnetic” point. %J has a global maximum in m # 0 (optimal estimator).
|
— frap(m) : — frap(m) I
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| |
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A spectral method can only use the physical information available in the uninformative point m = 0.
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Constructive derivation of a spectral method that is
conjectured to be optimal.

Compute the Hessian of frap at the paramagnetic point.

OwGout (Y, 0, p(A) 1/ ¥) ; Similar to previous strategies

e, 2, in community detection.

Mrap = —dV2 frap(m = 0)
d MZ 1+ pQ)l}awgout(y,ua 0, p(A), /)



OPTIMAL SPECTRAL METHOD

From the Bethe Hessian analysis

n

1
M(T) = - > Ty, @,

p=1

For any right-orthogonally invariant sensing matrix, the optimal spectral method (in terms of weak-recovery

threshold and achieved error) belongs to the class of matrices M(7) and is attained in:

a(.u'g()ut (yua OJ p<)\>V/a)

T (y) =

1 ‘I‘ % wgout(y,uvoa p<)\>,,/05)

The optimal method is the “naive” generalization of Method I.

We did not assume anything on the form of the method: we
confirm the validity of the restriction of previous works on spectral
methods to the class of matrices M(7)!

The optimal spectral method does not depend on the spectrum of
the sensing matrix (apart from a global scaling), nor on the
sampling ratio o!

mm) Consequences for practitioners: one only needs to know the

observation channel to construct the method!

Complex Gaussian ® and Poisson noise Fou(ylz) = ¢ " S 6(y — &)
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* The optimal method corresponds to marginal stability in both Mrar

. the dominant eigenvector of M, s\ is a suboptimal estimator!
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SPECTRAL METHODS PERFORMANCE
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«  Zramp(A = 1) = Trap, achieving the best overlap. Otherwise Zramp(Amax) is suboptimal in terms of MSE.
« Our theory stays valid for matrices with controlled structure (partial OFT = randomly subsampled DFT).

* For partial OFT matrices, we use the method as initialization of a gradient-descent procedure: perfect recovery at o € (3,4),

while the best polynomial-time algorithm achieves apr ~ 2,3 [AM&al 201,

P(A)



CONCLUSION AND PERSPECTIVES

Main contributions

( Constructive derivation of a conjecturally optimal spectral method in generic phase retrieval problems, in a framework \
that encompasses real/complex variables and a wide variety of sensing matrices.
« Our results apply to randomly subsampled DFT matrices and to real image (i.e. structured signal) recovery.

« We use two fundamentally equivalent approaches - message-passing linearization and Bethe Hessian analysis - that yield

\ the same optimal performance, associated with a marginal stability of the linear dynamics. /

Open questions remain, e.9. the “marginality vs instability” puzzle: In M avp the optimal method is “hidden” inside the bulk and

marginally stable, while the dominant eigenvalue is unstable and suboptimal.

THANKYOU !



