

CONSTRUCTION OF OPTIMAL SPECTRAL METHODS IN PHASE RETRIEVAL

arXiv:2012.04524

Antoine Maillard

Joint work with Florent Krzakala, Yue M. Lu & Lenka Zdeborová

Mathematical and Scientific Machine Learning – August 16th 2021

PHASE RETRIEVAL

<u>Goal</u>: Recover a d-dimensional signal \mathbf{X}^{\star} from n data points $\{\Phi_{\mu},Y_{\mu}\}_{\mu=1}^{n}$ generated as:

Generalized Linear Model (GLM)

Observations $Y_{\mu} \in \mathbb{R}$ Real / Complex $\beta = 1$ $\beta = 2$

$$Y_{\mu} \sim P_{\text{out}}\left(\cdot \middle| \frac{1}{\sqrt{d}} \sum_{i=1}^{d} \Phi_{\mu i} X_{i}^{\star}\right) \; \mu \in \{1, \cdots, n\}$$

(Probabilistic) channel with possible noise.

Sensing matrix (real/complex)

Signal (real/complex), d-dimensional

In phase retrieval, one measures the modulus $P_{\mathrm{out}}(y|z) = P_{\mathrm{out}}(y||z|)$, e.g. noiseless $Y_{\mu} = \frac{1}{d} |(\Phi \mathbf{X}^{\star})_{\mu}|^2$; Poisson-noise $Y_{\mu} \sim \mathrm{Pois}(\Lambda |(\Phi \mathbf{X}^{\star})_{\mu}|^2/d)$.

Arises in signal processing, statistical estimation, optics, X-ray crystallography, astronomy, microscopy...

How to solve this problem efficiently in high dimensions ? $n,d \to \infty$

- SDP relaxations [Candès&al '15a&b, Waldspurger&al '15, Goldstein&al '18, ...]
- Non-convex optimization procedures [Netrapalli&al '15, Candès&al '15c, ...]
- Approximate Message-Passing [Barbier&al '19, <u>A.M.</u>&al '20]

Computationally heavy / Need informed initialization

Spectral methods

[Mondelli&al '18, Luo&al '18, Dudeja&al '19,...]

CONSTRUCTION OF SPECTRAL METHODS

Our model: The matrix Φ is right-orthogonally (unitarily) invariant, i.e. delocalized right-eigenvectors: $\forall \mathbf{U}, \; \Phi \stackrel{d}{=} \Phi \mathbf{U}$. The bulk of eigenvalues of $\Phi^\dagger \Phi/d$ converges to a distribution $\nu(x)$, as $n,d \to \infty$ with $n/d \to \alpha > 0$.

Examples: Gaussian matrices, product of Gaussians, random column-orthogonal/unitary, any $\Phi \equiv \mathbf{USV}^{\dagger}$ with $S_i^2 \stackrel{\mathrm{i.i.d.}}{\sim} \nu$.

Given a phase retrieval problem, we want an optimal spectral method (among all possible ones) in terms of estimation error:

$$\mathbf{MSE} \equiv rac{1}{d
ho} \|\mathbf{X}^* - \hat{\mathbf{X}}_{\mathrm{spectral}}\|^2$$

This talk: Three different strategies, related to the statistical physics approach to high-dimensional inference.

- Method I: "Naïve" generalization of what is known for Gaussian matrices.
- <u>Method II:</u> Linearization of message-passing algorithms.
- <u>Method III:</u> Bethe Hessian analysis from the Thouless-Anderson-Palmer [TAP77] free energy.

Most previous works reduced to methods of the type

$$\mathbf{M}(\mathcal{T}) \equiv rac{1}{d} \sum_{\mu=1}^{n} \mathcal{T}(y_{\mu}) \mathbf{\Phi}_{\mu} \mathbf{\Phi}_{\mu}^{\dagger}$$

For Gaussian matrices Φ the optimal method in this class is given by

- In noiseless phase retrieval one has $\mathcal{T}^{\star}_{Gaussian}(y) = 1 1/y$.
- We can naively use it for all matrices: $\mathbf{M}_{\mathrm{naive}} \equiv \mathbf{M}(\mathcal{T}^*_{\mathrm{Gaussian}})$

$$\mathbf{M}_{\mathrm{naive}} \equiv \mathbf{M}(\mathcal{T}^*_{\mathrm{Gaussian}})$$

$$\mathcal{T}_{\mathrm{Gaussian}}^{\star}(y) \equiv \frac{\partial_{\omega} g_{\mathrm{out}}(y_{\mu}, 0, \rho)}{1 + \rho \partial_{\omega} g_{\mathrm{out}}(y_{\mu}, 0, \rho)}$$

$$\partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \sigma^{2}) = -\frac{1}{\sigma^{2}} + \frac{1}{\sigma^{4}} \frac{\int_{\mathbb{K}} dx \ e^{-\frac{\beta}{2\sigma^{2}}|x|^{2}} |x|^{2} P_{\text{out}}(y_{\mu}|x)}{\int_{\mathbb{K}} dx \ e^{-\frac{\beta}{2\sigma^{2}}|x|^{2}} P_{\text{out}}(y_{\mu}|x)}$$

$$(\mathbb{K} = \mathbb{R}, \mathbb{C})$$

METHOD II

[Schniter&al '16, A.M.&al '20]: For GLMs with rotationally-invariant matrices, the best-known polynomial-time algorithm is Generalized Vector Approximate Message-Passing (G-VAMP).

$$\mathbf{M}_{\text{LAMP}} \equiv \frac{\rho \langle \lambda \rangle_{\nu}}{\alpha} \left(\frac{\alpha}{\langle \lambda \rangle_{\nu}} \frac{\mathbf{\Phi} \mathbf{\Phi}^{\dagger}}{d} - \mathbf{I}_{n} \right) \text{Diag}(\{\partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu}/\alpha)\}) \implies \hat{\mathbf{x}} \equiv \frac{\mathbf{\Phi}^{\dagger} \text{Diag}(\{\partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu}/\alpha)\}) \hat{\mathbf{u}}}{\left\| \mathbf{\Phi}^{\dagger} \text{Diag}(\{\partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu}/\alpha)\}) \hat{\mathbf{u}} \right\|} \sqrt{d\rho}.$$

 $\mathbf{M}_{\mathrm{LAMP}}$ is a $n \times n$ non-Hermitian matrix (complex spectrum).

 $\hat{\mathbf{u}}$: top eigenvector of $\mathbf{M}_{\mathrm{LAMP}}$.

METHOD III: TAP LANDSCAPE AND BETHE HESSIAN

Thouless-Anderson-Palmer approach [TAP77]

- The posterior measure of x|Y (the *Gibbs measure*) decomposes along pure states.
- These pure states can be found by "tilting" the measure, imposing $m_i = \langle x_i \rangle$ and $\sigma_i^2 = \operatorname{Var}(x_i)$:

They are the maxima of the free entropy of this constrained measure, as a function of (\mathbf{m}, σ) .

• TAP free entropy for rotationally-invariant generalized linear models derived in [A.M.&al '19], generalizing [Parisi&Potters '95]:

Involved but explicit!

$$f_{\text{TAP}}(\mathbf{m}) = \sup_{\sigma \geq 0} \sup_{\substack{\mathbf{g} \in \mathbb{K}^n \\ r \geq 0}} \operatorname{extr}_{\substack{\boldsymbol{\omega} \in \mathbb{K}^n \\ b \geq 0}} \operatorname{extr}_{\substack{\boldsymbol{\lambda} \in \mathbb{K}^d \\ \gamma \geq 0}} \left[\frac{\beta}{d} \sum_{i=1}^d \lambda_i \cdot m_i + \frac{\beta \gamma}{2d} \left(d\sigma^2 + \sum_{i=1}^d |m_i|^2 \right) - \frac{\beta}{d} \sum_{\mu=1}^n \omega_\mu \cdot g_\mu - \frac{\beta b}{2d} \left(\sum_{\mu=1}^n |g_\mu|^2 - \alpha dr \right) + \frac{1}{d} \sum_{i=1}^d \ln \int_{\mathbb{K}} P_0(\mathrm{d}x) e^{-\frac{\beta \gamma}{2}|x|^2 - \beta \lambda_i \cdot x} + \frac{\alpha}{n} \sum_{\mu=1}^n \ln \int_{\mathbb{K}} \frac{\mathrm{d}h}{\left(\frac{2\pi b}{\beta}\right)^{\beta/2}} P_{\text{out}}(y_\mu | h) e^{-\frac{\beta |h - \omega_\mu|^2}{2b}} + \frac{\beta}{d} \sum_{i=1}^d \sum_{\mu=1}^n g_\mu \cdot \left(\frac{\Phi_{\mu i}}{\sqrt{d}} m_i\right) + \beta F(\sigma^2, r) \right].$$

$$F(x, y) \equiv \inf_{\zeta_x, \zeta_y > 0} \left[\frac{\zeta_x x}{2} + \frac{\alpha \zeta_y y}{2} - \frac{\alpha - 1}{2} \ln \zeta_y - \frac{1}{2} \langle \ln(\zeta_x \zeta_y + \lambda) \rangle_{\nu} \right] - \frac{1}{2} \ln x - \frac{\alpha}{2} \ln y - \frac{1 + \alpha}{2}.$$

Weak-recovery impossible

Global maximum of $f_{\rm TAP}$ in ${\bf m}=0$: the uninformative "paramagnetic" point.

Weak-recovery possible

 $\mathbf{m}=0$ is an unstable stationary point of f_{TAP} , which has a global maximum in $\mathbf{m}\neq 0$ (optimal estimator).

A spectral method can only use the physical information available in the uninformative point $\mathbf{m}=0$.

Compute the Hessian of f_{TAP} at the paramagnetic point.

<u>Constructive</u> derivation of a spectral method that is conjectured to be optimal.

TAP - Bethe Hessian spectral method

$$\mathbf{M}_{\mathrm{TAP}} \equiv -d\nabla^2 f_{\mathrm{TAP}}(\mathbf{m} = 0) = -\frac{1}{\rho} \mathbf{I}_d + \frac{1}{d} \sum_{\mu=1}^n \frac{\partial_{\omega} g_{\mathrm{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu} / \alpha)}{1 + \frac{\rho \langle \lambda \rangle_{\nu}}{\alpha} \partial_{\omega} g_{\mathrm{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu} / \alpha)} \mathbf{\Phi}_{\mu} \mathbf{\Phi}_{\mu}^{\dagger}$$

Similar to previous strategies in community detection.
[Saade&al'14]

OPTIMAL SPECTRAL METHOD

From the Bethe Hessian analysis

$$\mathbf{M}(\mathcal{T}) \equiv \frac{1}{d} \sum_{\mu=1}^{n} \mathcal{T}(y_{\mu}) \mathbf{\Phi}_{\mu} \mathbf{\Phi}_{\mu}^{\dagger}$$

Main conjecture: For any right-orthogonally invariant sensing matrix, the optimal spectral method (in terms of weak-recovery threshold and achieved error) belongs to the class of matrices $\mathbf{M}(\mathcal{T})$ and is attained in:

$$\mathcal{T}^*(y) = \frac{\partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu} / \alpha)}{1 + \frac{\rho \langle \lambda \rangle_{\nu}}{\alpha} \partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu} / \alpha)}$$

- The optimal method is the "naïve" generalization of Method I.
- We did not assume anything on the form of the method: we confirm the validity of the restriction of previous works on spectral methods to the class of matrices M(T)!
- The optimal spectral method does not depend on the spectrum of the sensing matrix (apart from a global scaling), nor on the sampling ratio $\alpha!$
- Consequences for practitioners: one only needs to know the observation channel to construct the method!

- The optimal method corresponds to marginal stability in both M_{TAP} and M_{LAMP} .
- the dominant eigenvector of $\mathbf{M}_{\mathrm{LAMP}}$ is a suboptimal estimator!

SPECTRAL METHODS PERFORMANCE

Noiseless complex phase retrieval $Y_{\mu}=rac{1}{d}ig|\Phi\mathbf{X}^*ig|^2$

- $\hat{x}_{\text{LAMP}}(\lambda=1)$ \hat{x}_{TAP} , achieving the best overlap. Otherwise $\hat{x}_{\text{LAMP}}(\lambda_{\text{max}})$ is suboptimal in terms of MSE.
- Our theory stays valid for matrices with controlled structure (partial DFT \equiv randomly subsampled DFT).
- For partial DFT matrices, we use the method as initialization of a gradient-descent procedure: perfect recovery at $\alpha \in (3,4)$, while the best polynomial-time algorithm achieves $\alpha_{PR} \simeq 2,3$ [AM&al 20]. Very competitive while computationally cheap!

CONCLUSION AND PERSPECTIVES

Main contributions

- Constructive derivation of a conjecturally optimal spectral method in generic phase retrieval problems, in a framework that encompasses real/complex variables and a wide variety of sensing matrices.
- Our results apply to randomly subsampled DFT matrices and to real image (i.e. structured signal) recovery.
- We use two fundamentally equivalent approaches message-passing linearization and Bethe Hessian analysis that yield the same optimal performance, associated with a marginal stability of the linear dynamics.

Open questions remain, e.g. the "marginality vs instability" puzzle: In M_{LAMP} the optimal method is "hidden" inside the bulk and marginally stable, while the dominant eigenvalue is <u>unstable</u> and <u>suboptimal</u>.

THANK YOU!