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Adversarial Examples

Figure: An adversarial input imperceivable to human, overlaid on a typical image,
can cause a classifier to misclassify a panda as a gibbon.[Goodfellow et al.
(2014)]

Yifei Huang1, Yaodong Yu2, Hongyang Zhang3, Yi Ma2, and Yuan Yao1 1Department of Mathematics, Hong Kong University of Science and Technology 2Department of EECS, University of California at Berkeley 3University of Waterloo and Toyota Technological Institute at Chicago Email: hongyanz@ttic.edu, yuany@ust.hkMSML21 3 / 34

hongyanz@ttic.edu
yuany@ust.hk


Adversarial Examples

Formal Definition [Szegedy et al. (2013)]: adversarial examples are
generated by minimizing the following function with respect to r

L(f̂ (x + r), l) + c · |r | subject to x + r ∈ [0, 1] (1)

where L is the loss function, such as cross entropy loss, f̂ is the model we
want to attack, x is the original image, l is the target label and r is the
pixel-wise perturbation, then xadv = x + r .
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Adversarial Attacks

Gradient Based
Fast Gradient Sign Method (FGSM)
Projected Gradient Descent (PGD)
Carlini & Wagner attack (C&W)
...

Gradient Free
SPSA attack
Boundary attack
...
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Obfuscated Gradients

Gradient masking (Papernot et al. (2017); Athalye et al. (2018)) is a
phenomenon widely associated with the obfuscation of gradient information
in gradient based adversarial attacks, yet failure under robust gradient and
gradient-free attacks, thus giving a false sense of adversarial robustness.

Figure: Seven of nine defense techniques accepted at ICLR 2018 cause obfuscated
gradients and are vulnerable to their attacks. Athalye et al. (2018)
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Adversarial Defenses

Adversarial Training
Generating adversarial examples and include them as part of the
training data. (Madry et al. (2017); Zhang et al. (2019))

Random Smoothing and stability training
Adding gaussian noise to the original images. (Cohen et al. (2019),
Zheng et al. (2016))

...
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Adversarial Training

Adversarial training is first introduced by [Madry et al. (2017)] which
tries to solve the following minimax problem:

min
θ
ρ(θ), where ρ(θ) = E(x ,y)∼D

[
max
δ∈S

L(θ, x + δ, y)

]
(2)

where ED[L] is the population risk for data distribution D. Instead of
feeding original samples to loss L, we allow the adversary to perturb the
input first, thus making model to gain adversarial robustness.
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Adversarial Training

Problems
Norm-agnostic Setting

Adversarial training suffers from brittleness against attacks in `2 and
`∞ norms simultaneously. (Li et al. (2019))

Intrinsic trade-off between natural accuracy and adversarial robustness
Adversarial training typically leads to more than 10% reduction of
accuracy compared with natural training. (Zhang et al. (2019);
Tsipras et al. (2018))

Computationally very expensive.

Questions: Instead of adversarial training, can we design a stable network
architecture whose natural training is able to gain adaptive robustness on
both `2 and `∞ norms while no sacrifice of natural accuracy?
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Adversarial Training

Previous works on robust network architecture design
Parseval networks (Cisse et al. (2017)): explicitly bounded the
Lipschitz constant by either requiring each fully-connected or
convolutional layer be composed of orthonormal filters.

Pros: control Lipschitz constants of neural networks through
regularization.
Cons: the robustness is much weaker than adversarial training.

`2-nonexpansive neural networks (Qian and Wegman (2018)):
restricting the spectral radius of the matrix in each layer to be small.

Pros: control Lipschitz constants of neural networks without requiring
filtes to be orthogonal to each other.
Cons: can not guarantee robustness in `∞ norm.

...
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Intuitions with deep neural networks

[Madry et al. (2017)] empirically reported that the capacity of the model
becomes a major factor affecting its overall robustness. Inspired by this,
What happens as the network goes deeper and takes smaller steps? This
naturally leads to the ODE network. Since ODE networks are provable
deep limit of ResNets (Avelin and Nyström (2019);Thorpe and van
Gennip (2018))

Figure: The effect of network capacity on the performance of the network.
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Neural Ordinary Differentials Equations
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(a) ResNet block (b) ResNet equation

Figure: ResNet. [He et al. (2016)]
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Neural Ordinary Differentials Equations

In the Neural ODE, in constrast, [Chen et al. (2018)] took the limit of
the finite differences over the infinitesimal ∆t and parameterized the
continuous dynamics of hidden units using an ODE specified by a neural
network.

(a) ResNet equation (b) ResNet ODE

Figure: ResNet Equation vs ODE. [Chen et al. (2018)]
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Deep Stable ODE Networks

Inspired by Neural ODE, we introduce the following parametric ODE block
with a small positive damping factor γ

dx(t)

dt
= σ(W(2)

k+1z(t)− γx),

dz(t)

dt
= σ(W(1)

k+1x(t)− γz), (3)

xk+1 = z(t0), x(0) = xk , z(0) = zk ,
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Deep Stable ODE Networks
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Figure: ODE block architecture.
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Deep Stable ODE Networks

Theorem (Stability of ODE Blocks)

Suppose that the activation function σ is strictly monotonically increasing,
i.e., σ′(·) > 0 and positive damping factor γ is small. Let
W(2)

k+1 = −W(1)>
k+1 . Then for any implementation of network parameters, the

forward propagation (3) is stable in the sense of Lyapunov; that is, for all
δ > 0, there exists a stable radius ε(δ) > 0 such that if ‖x0 − x′0‖ ≤ ε(δ),
we have ‖fODENet-k(x0;t0) − fODENet-k(x′0;t0)‖ ≤ δ for all t0 > 0.

Figure: Skew-symmetric ODE Block
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Deep Stable ODE Networks

Benefits of our skew-symmetric architecture:
Change of dimensionality: the introduction of the auxiliary variable
z ∈ Rdout enables us to change the dimension of the input and output
vectors; that is, the input variable x ∈ Rdin may have different
dimensions as the output variable z ∈ Rdout . This is in sharp contrast
to the original design of Neural ODE (Chen et al. (2018)), where
the input and output vectors of each ODE block must have the same
dimension.
Parameter efficiency: the skew-symmetric ODE block has only half
number of parameters compared to the ResNet blocks and the original
design of Neural ODE blocks due to parameter sharing.
Inference-time robustness: the established architecture enjoys
stability.
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Deep Stable ODE Networks
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Figure: Stabilized neural ODE Network (SONet) architecture example. Both
fODENet-k and fODENet-class are built on our stable ODE block.
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Experiments

Models
ResNet: We apply the ResNet with 10 layers as the baseline model,
denoted by ResNet10.
SONet: We replace each residual basic block in the ResNet10
architecture with the proposed stable skew-symmetric ODE block.
SOBlock: We replace the first convolution layer in ResNet10 above
by our proposed skew-symmetric ODE block and leave the other parts
unchanged.
ODENet: We use the original ODENet architecture (Chen et al.
(2018)).
Additionally, in order to compare the performance of SONet and
ResNet with different number of parameters, we scale the model
capacity of SONet and ResNet10 by changing the input channel from
32 to 64.
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Experiments

Attacks
White-Box Attacks

`∞ PGD attack: we set the perturbation distance ε= 0.031 and the
attack step size α=0.003.
`2 PGD attack: we set the perturbation distance ε= 0.5 and the attack
step size α=0.1.
`∞ CW attack: we set the perturbation distance ε = 0.031, the
max-iterations K=100.

Black-Box Attack
SPSA attack: we apply the ε = 0.031, the number of iterations K=20
and the number of samples to be 32.

Training Method
Adversarial training : We use TRADES [Zhang et al. (2019)] as our
baseline adversarial training method with two different regularization
parameter 1/λ = 1.0 and 6.0.
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Experiments

ODE Solvers (we set all error tolerance as 0.1):
Fixed Stepsize:

Euler method (first order, fixed step size h = 1)
RK4 (fourth order, fixed step size h = 1)

Adaptive Stepsize:
Heun (second order, adaptive step size)
Bosh3 (third order, adaptive stepsize)
DOPRI5 (fifth order, adaptive step size)

Training settings: We set the total epoch T = 350, batch size B = 100,
the initial learning rate η = 0.01 (decay 0.1 at 150 and 300 epochs
respectively), and apply SGD with momentum 0.9 as the optimizer. No
weight decay is used during training.
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Positive Experiments - PGD Attacks
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Negative Experiments - CW&SPSA Attacks
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Experiments - Adaptive Stepsize Analysis
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Experiments - Adaptive Stepsize Analysis

With fixed solver, different PGD iterations will result in different adaptive
steps, thus confounding the gradients for PGD attacks. On the other hand,
for fixed PGD iterations 1000, with the decrease of error tolerance, the
selected adaptive stepsize becomes smaller and smaller which means that
the estimated solution is more accuracy and gradient masking effect is
decreasing.

Yifei Huang1, Yaodong Yu2, Hongyang Zhang3, Yi Ma2, and Yuan Yao1 1Department of Mathematics, Hong Kong University of Science and Technology 2Department of EECS, University of California at Berkeley 3University of Waterloo and Toyota Technological Institute at Chicago Email: hongyanz@ttic.edu, yuany@ust.hkMSML21 25 / 34

hongyanz@ttic.edu
yuany@ust.hk


Summary

We design a stabilized neural ODE network named SONet whose ODE
blocks are skew-symmetric and proved to be input-output stable.

By experiments, we show that SONet with only natural training can
achieve comparable robustness with the state-of-the-art adversarial
defense methods under PGD attacks, without sacrificing natural
accuracy.
Moreover, we find that the adaptive stepsize numerical ODE solvers,
such as adaptive HEUN2, BOSH3, and DOPRI5, have a gradient
masking effect that fails the PGD attacks which are sensitive to
gradient information of training loss.
We provide a new explanation that the adversarial robustness of
ODE-based networks mainly comes from the obfuscated gradients in
numerical ODE solvers with adaptive step sizes.
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Appendix

Sketch of Proof.
We observe that Eqn. (3) has an equivalent expression,
xk+1 = fODENet(xk ; t0):

d

dt

[
x
z

]
= σ

([
0 −Wk+1

W>k+1 0

] [
x
z

]
− γI

[
x
z

])
,

x(0) = xk , z(0) = zk , xk+1 := z(t0).

Denote by

Ak+1 :=

[
0 −W>k+1

Wk+1 0

]
.

Note that Ak+1 is a skew-symmetric matrix such that Ak+1 = −A>k+1. So
Re[λi (Ak+1)] ≤ 0 for all i , where Re[·] represents the real part of a
complex variable and λi (Ak+1) is the i-th eigenvalue of matrix Ak+1.
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Sketch of proof.

We note that an ODE system is stable if Re[λi (Jk+1)] < 0 (Åström and
Murray (2010)), where Jk+1 is the Jacobian of the ODE:

Jk+1 := ∇[x;z]

(
σ

([
0 −W>k+1

Wk+1 0

] [
x
z

]
− γI

[
x
z

]))
=: Dk+1(Ak+1 − γI),

where we have defined

Dk+1 := Diag
(
σ′

([
−γ −W>k+1

Wk+1 −γ

] [
x
z

]))
.

Because σ′(·) > 0, the matrix D−1/2
k+1 exists. We observe that

Jk+1 ∼ D1/2
k+1(Ak+1 − γI)D

1/2
k+1,

where the notation ∼ means the two matrices are similar.
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Appendix

Sketch of Proof.
Since similar matrices have the same eigenvalues, for all i , we have

λi (Jk+1) = λi (D
1/2
k+1(Ak+1 − γI)D

1/2
k+1). (4)

For the right hand side in Eqn. (4), Re[λi (Ak+1)] ≤ 0 So
Re[λi (Ak+1 − γI)] < 0, and matrix Dk+1 is positive diagonal. Combining
with Eqn. (4), we have Re[λi (Jk+1)] < 0. Thus, the Lyapunov stability is
valid with respect to Euclidean `2-norm. For other equivalent `p-norms
(1 ≤ p ≤ ∞), the result holds up to a constant that depends on the input
dimension. The proof is completed.
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