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Abstract
Variational quantum eigensolvers have recently received increased attention, as they enable

the use of quantum computing devices to find solutions to complex problems, such as the ground
energy and ground state of strongly-correlated quantum many-body systems. In many applications,
it is the optimization of both continuous and discrete parameters that poses a formidable challenge.
Using reinforcement learning (RL), we present a hybrid policy gradient algorithm capable of simul-
taneously optimizing continuous and discrete degrees of freedom in an uncertainty-resilient way.
The hybrid policy is modeled by a deep autoregressive neural network to capture causality. We
employ the algorithm to prepare the ground state of the nonintegrable quantum Ising model in a
unitary process, parametrized by a generalized quantum approximate optimization ansatz: the RL
agent solves the discrete combinatorial problem of constructing the optimal sequences of unitaries
out of a predefined set and, at the same time, it optimizes the continuous durations for which these
unitaries are applied. We demonstrate the noise-robust features of the agent by considering three
sources of uncertainty: classical and quantum measurement noise, and errors in the control unitary
durations. Our work exhibits the beneficial synergy between reinforcement learning and quantum
control.
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1. Introduction

The last decade has seen impressive breakthroughs in Machine Learning (ML), ranging from
image classification (Salakhutdinov, 2014; Krizhevsky et al., 2012) to mastering complex video and
board games (Mnih et al., 2013; Silver et al., 2016). ML algorithms have opened the door to solving
major scientific challenges hitherto considered intractable, such as protein modelling (Rao et al.,
2019) and folding (Jumper et al., 2020), or molecular dynamics simulations (Lu et al., 2021).

Deep learning tools and methods quickly found their way into the field of physics (Dunjko and
Briegel, 2018; Mehta et al., 2019; Carleo et al., 2019; Carrasquilla, 2020): Supervised learning was
found efficient in identifying phase transitions and analyzing experimental data (Carrasquilla and
Melko, 2017; Van Nieuwenburg et al., 2017; Bohrdt et al., 2019; Rem et al., 2019). Unsupervised
learning brought a new class of variational many-body wavefunctions (Carleo and Troyer, 2017;
Carrasquilla and Torlai, 2021), as well as methods to perform tomography on many-body quan-
tum states (Torlai et al., 2018), find conservation laws from data (Iten et al., 2020), identify phase
transitions (Wang, 2016; Kottmann et al., 2020), Hamiltonian learning (Valenti et al., 2019), etc.
Reinforcement learning (RL) (Sutton and Barto, 2018) brought strategies for navigating turbulent
flows (Reddy et al., 2016; Colabrese et al., 2017; Bellemare et al., 2020), and even exploring the
string landscape (Halverson et al., 2019), while evolutionary methods have recently been applied to
error correction (Théveniaut and van Nieuwenburg, 2021).

The variational character of ML models combined with their intrinsic optimization procedure,
provides a natural playground for applications in quantum control (Schäfer et al., 2020; Wang et al.,
2021; Sauvage and Mintert, 2020; Fösel et al., 2020; Nautrup et al., 2019; Albarrán-Arriagada et al.,
2018; Sim et al., 2021; Wu et al., 2020a,b; Anand et al., 2021). Due to the close relationship between
control theory and reinforcement learning, the control of quantum systems has become a major
application area of RL algorithms in physics. Notable examples include policy gradient (Niu et al.,
2019; Fösel et al., 2018; August and Hernández-Lobato, 2018; Porotti et al., 2019; Wauters et al.,
2020; Yao et al., 2020a; Sung, 2020), Q-learning (Chen et al., 2013; Bukov, 2018; Bukov et al.,
2018; Sørdal and Bergli, 2019; Bolens and Heyl, 2020) and AlphaZero (Dalgaard et al., 2020b).

Over the years, the physics community has also developed a number of successful quantum
control algorithms (Khaneja et al., 2005; Caneva et al., 2011; Peruzzo et al., 2014; Dalgaard et al.,
2020a; Magann et al., 2020, 2021), including GRAPE, CRAB, and VQE. One prominent example
of the latter is Quantum Approximate Optimization Algorithm (QAOA) (Farhi et al., 2014), whose
versatility allows for solving complex combinatorial problems using quantum computers (Garcia-
Saez and Riu, 2019; Dong et al., 2019; Khairy et al., 2019, 2020; Yao et al., 2020b; Tabi et al.,
2020; Bravyi et al., 2020). Quantum control algorithms, such as CRAB or QAOA, come up with an
ingenious physics-informed variational ansatz for the structure of control protocols. RL algorithms,
on the other hand, are model-free and resilient to uncertainty. Hence, a natural question emerges as
to how one can combine both benefits offered by RL and quantum control in a unified framework.

In this paper, our aim is to deploy a generalized QAOA ansatz in combination with an end-
to-end deep RL algorithm for a versatile continuous-discrete quantum control [Sec. 2]. We adopt
the continuous degrees of freedom of QAOA which offer an increased control accuracy. Addition-
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ally, we consider an enhanced variational control ansatz which contains a larger space to select the
building blocks of the protocols from; this introduces a second, discrete combinatorial optimization
problem. The resulting algorithm, RL-QAOA, realizes greater gains by striking a balance between
robustness and versatility: it is resilient to various kinds of uncertainty, a property shared with PG-
QAOA (Yao et al., 2020a); at the same time, RL-QAOA has access to the more general variational
counter-diabatic (CD) driving ansatz (Demirplak and Rice, 2005; Masuda and Nakamura, 2009;
Guéry-Odelin et al., 2019) through CD-QAOA (Yao et al., 2020b).

However, RL-QAOA presents a number of new challenges, cf. Sec. 3. It requires a mixed
continuous-discrete action space so that the RL agent can construct a control protocol by optimizing
the order in which unitaries appear in the control sequence; simultaneously, the agent has to also
choose the continuous duration to apply each unitary. This requires the use of a suitable ML model
to approximate the policy, which allows us to build in temporal causality. Therefore, an essential
building block of RL-QAOA is a novel monolithic deep autoregressive policy network1 that handles
continuous and discrete actions on equal footing. To train our RL agent, we derive an extension of
Proximal Policy Optimization (PPO) (Schulman et al., 2017) to hybrid discrete-continuous policies.

We apply RL-QAOA to find the ground state of a nonintegrable chain of interacting spin-1/2
particles (a.k.a. qubits), and interacting spin-1 particles (a.k.a. qutrits) in a fixed amount of time,
cf. Sec. 4. The mixed discrete-continuous degrees of freedom allow the RL agent to construct a
short protocol sequence away from the adiabatic regime. We test the agent’s behavior in a strongly
stochastic environment, by considering three different kinds of noise: classical and quantum mea-
surement noise, and errors in the control unitary gate duration. In Sec. 5, we demonstrate that
RL-QAOA is insensitive to the types of noise applied, and outperforms previously developed algo-
rithms based on QAOA in the regime of strong noise.

2. Preliminaries

We open up the discussion by introducing the QAOA ansatz used in quantum control. Fol-
lowing a short overview of reinforcement learning terminology, we review two RL-based QAOA
algorithms — PG-QAOA and CD-QAOA — which we aim to blend into a homogeneous hybrid
in Sec. 3. The resulting new algorithm combines the benefits of the generalized variational QAOA
ansatz, with an RL algorithm performing both continuous and discrete control simultaneously.

2.1. QAOA for Ground State Preparation

Of particular interest in the quest for designing new materials with novel features (such as
room-temperature superconductors or topological quantum computers), is the study of ground state
properties in quantum many-body physics. Quantum simulators provide an ideal platform to bring
together both theory and experiment; yet, they require the ability to prepare a system in its ground
state – a formidable challenge for modern quantum computing devices, due to the presence of
various sources of uncertainty and noise. The Quantum Approximate Optimization Algorithm
(QAOA) (Farhi et al., 2014) provides a widely used state-of-the-art ansatz for this purpose.

Consider a quantum system ofN qubits, described by the HamiltonianH . Starting from an ini-
tial quantum state |ψi〉, in QAOA we apply two alternating unitary evolution operators (i.e. quantum

1. Autoregressive deep neural networks were recently used in physics to learn variational free energies in statistical
mechanics models (Wu et al., 2019), and as variational approximators for quantum many-body states (Sharir et al.,
2020).
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gates) (Farhi et al., 2014):

|ψ(T )〉 = U({αj , βj}pj=1) |ψi〉 = e−iH2βpe−iH1αp · · · e−iH2β1e−iH1α1 |ψi〉 . (1)

The dynamics are generated by the time-independent operators H1 and H2, applied for a duration
of αj ≥ 0 and βj ≥ 0, respectively (j = 1, 2, · · · , p with p ∈ N). We refer to q= 2p as the total
circuit depth. In order to apply QAOA to many-body systems (Ho and Hsieh, 2019), the protocol
durations {(αj , βj)}pj=1 are variationally optimized to minimize the expected value of the energy
density E({αj , βj}pj=1)=N−1 〈ψ(T )|H|ψ(T )〉 :

{α∗j , β∗j }pj=1 = arg min
{αj ,βj}pj=1

E({αj , βj}pj=1),

p∑
j=1

(αj + βj) = T. (2)

The additional constraint
∑p

j=1(αj +βj) = T is required for the resulting protocol to remain in the
regime of practical applications, and also for a fair comparison between different algorithms.

As a concrete example to keep in mind, consider the spin-1/2 Ising Hamiltonian

H=H1+H2, H1=

N∑
i=1

JSzi+1S
z
i +hzS

z
i , H2 =

N∑
i=1

hxS
x
i , (3)

where [Sαk , S
β
j ] = iδkjε

αβγSγj are the spin-1/2 operators. We are interested in preparing the ground
state of H , starting from a spin-up polarized initial product state. More details about the physical
system are discussed later on in Sec. 4.1 and App. D.

2.2. Reinforcement Learning (RL)

While QAOA defines a variational ansatz to prepare ground states in a unitary process, it does
not yet provide a self-contained optimization procedure to find the optimal protocol durations. A
universal optimization framework is presented by RL (Sutton and Barto, 2018).

Reinforcement learning comprises a powerful set of algorithms designed to solve control prob-
lems. In RL, an agent aims to find a policy π which solves a specific task in a trial-and-error
approach based on interactions with the agent’s environment. Consider a finite-horizon Markov
Decision Process (MDP) defined by the tuple (S,A, p, r) where S and A are the state and action
spaces, respectively, and p : S × S × A → [0, 1] defines the transition probability which gov-
erns the environment dynamics. Upon selecting an action a ∈ A, the environment transitions to
a new state s → s′ ∈ S, and emits a reward r : S × A → R, which the RL agent uses to se-
lect subsequent actions. The action aj ∈ A to be selected in a given state s ∈ S is determined
probabilistically by the instantaneous policy π(aj |sj) : A × S → [0, 1]. For a given policy π,
this process generates a trajectory τ = (s1, a1, ...., aq, sq+1) with probability τ ∼ Pπ(·). Here,
Pπ(τ) = p0(s1)π(a1|s1)p(s2|s1, a1) · · ·π(aq|sq)p(sq+1|sq, aq), the episode/trajectory length is q,
and p0 is the initial state distribution. The objective in RL is to find the optimal policy, i.e. the policy
which maximizes the total expected return: Eτ∼Pπ

[∑q
j=1 r(sj , aj)

]
.

2.3. Policy Gradient Quantum Approximate Optimization Algorithm (PG-QAOA)

A reinforcement learning based approach to QAOA was recently introduced in Ref. (Yao et al.,
2020a), using a policy gradient algorithm. The basic idea behind PG-QAOA is to let the RL agent
select the durations {αj , βj}, which define a continuous action space Ac.

4



RL-QAOA: REINFORCEMENT LEARNING FOR QUANTUM CONTROL USING AUTOREGRESSIVE POLICY

However, casting the quantum control problem within the RL framework comes with certain
challenges. The first challenge is that quantum states cannot be directly measured in experiments,
which poses questions about the proper definition of the RL state space. To remedy this in an
environment following deterministic Schrödinger dynamics, we fix the initial quantum state, and
define the RL state as the trajectory of actions sj = (ac

1, · · · , ac
j−1) = (α1, β1, · · · ) up to episode

step j (Bukov, 2018). Note that this definition is clearly inferior to using the full quantum state as
defined by the corresponding complex-valued probability amplitudes, since it is tied to a fixed initial
state. However, (i) it allows us to accommodate the experimental non-measurability constraint,
and (ii) the size of the state space does not grow exponentially with the system size N , which is
important in the context of quantum simulation of many-body systems. Even in such a restricted
setting, the state space is still exponentially large. Alternatively, one could use the expectation values
of observables to define an RL state (Wauters et al., 2020) which also avoids the non-measurability
problem. One disadvantage of this choice is that it leads to a partially-observable MDP: indeed,
physically very different initial states can have the same expectation values of observables. and
it is not a priori clear that the same action is optimal to take for both physical states. Moreover,
expectation values presume the ability to perform an average over a number of measurements which
also has to be considered with respect to applications in the lab.

The second challenge is the sparsity of the reward signal – a quantum measurement is allowed
only once at the end of each episode, since projective measurements collapse the quantum wave-
function and the quantum state is lost irreversibly.

Since the protocol durations are continuous degrees of freedom, we need an RL method for
continuous optimization. PG-QAOA defines the simplest ansatz: q = 2p independent Gaussian
distributions to parameterize the policy, one for each duration {αj , βj}pj=1 in Eq. (2). Since a
Gaussian distribution is uniquely determined by its mean µ and standard deviation σ, we need
a total of 2p independent variational parameters θ = {µαj , σαj , µβj , σβj}pj=1 to parametrize the
policy πθ:

πθ({αj , βj}pj=1) =

p∏
j=1

π(αj ;καj , ξαj )π(βj ;κβj , ξβj ), (4)

where καj = µαj , κβj = µβj are the means, and ξαj = σαj , ξβj = σβj are the variances of the
Gaussian policy. The actual protocol durations are thus sampled according to αj ∼ N (µαj , σ

2
αj ),

and similarly for βj . As was shown in Ref. (Yao et al., 2020a), despite its simplicity, PG-QAOA
defines a particularly noise-robust algorithm. In the presence of various kinds of noise, it readily
outperforms a number of alternative gradient-free optimization algorithms.

For this study, the original PG-QAOA implementation (Yao et al., 2020a) is not directly ap-
plicable, and a modification is required. First, the extensive scaling with increasing the number of
qubits suggests using the energy density as a cost function, rather than the many-body fidelity; in
doing this, the algorithm no longer requires an explicit reference to the target ground state we are
searching for. Second, the original PG-QAOA algorithm does not support an easy implementation
of the protocol duration constraint

∑p
j=1(αj + βj) = T . Here, in order to do a fair comparison

among different algorithms, we enforce this constraint. Note that this is a nontrivial task for the
policy gradient algorithm, for three reasons: (i) protocol durations are sampled from a Gaussian
distribution which has unbounded support, (ii) a Gaussian policy supports negative as well as posi-
tive samples (yet we require αj , βj ≥ 0 for a physical time duration), and (iii) sampled values, even
if bounded and nonnegative, are always random, and hence one needs to additionally fix their total
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Figure 1: Schematic diagram for PG-QAOA (Yao et al., 2020a) [left, see Sec. 2.3] and CD-QAOA (Yao
et al., 2020b) [right, see Sec. 2.4]. The PG-QAOA samples continuous QAOA-angles from its
policy and variationally updates the policy parameters via policy gradient; CD-QAOA autoregres-
sively samples the gate sequences for the generalized QAOA ansatz and employs the gradient-free
solver (Powell algorithm) to solve for their corresponding durations. The policy network is up-
dated via Proximal Policy Optimization (PPO). For a comparison with RL-QAOA, cf. Fig. 2.

sum. We consider two different approaches to resolving (i) and (ii), and apply a normalization trick
to fix (iii).

The first approach we consider is to define the policy using the Beta distribution (Chou et al.,
2017), i.e. αj , βj ∼ B(κ, ξ), instead of a Gaussian, and learn the two nonnegative parameters κ, ξ.
Since the Beta distribution is defined on the interval Ac = [0, 1], it solves the boundedness and
positivity problems. The policy is given by Eq. (4) with π(x;κ, ξ) = Γ(κ+ξ)

Γ(κ)Γ(ξ)x
κ−1(1 − x)ξ−1 the

probability density for the Beta distribution; Γ denotes the Gamma function. Note that the number
of independent variational parameters θ = {καj , ξαj , κβj , ξβj}pj=1, remains equal to 4p.

In the second approach, we pass the output of the Gaussian distribution through a sigmoid
activation function (Haarnoja et al., 2018b). Due to the boundedness of the sigmoid function, this
restricts the range of all actions/durations to the nonnegative interval Ac = [0, 1]. Hence, our
policy is given by Eq. (4) where π(x;κ, ξ) = 1

x(1−x)
1√
2πξ2

exp
(
− (logit(x)−κ)2

2ξ2

)
is the probability

density for the Sigmoid Gaussian distribution SN (κ, ξ2)2. Here, the logit function, logit(x) =
log x− log(1− x), is the inverse of the sigmoid function f(x) = 1/(1 + exp(−x)), and the factor

1
x(1−x) is the inverse Jacobian of x = f(y) over y [cf. App. C]. Notice how the action output of
this policy is forced within the interval [0, 1] by construction, without changing the total number of
independent variational parameters θ.

Finally, to fix the total protocol duration, (iii), we normalize the sum of durations manually
according to αj =

αj∑p
j=1(αj+βj)

T, βj =
βj∑p

j=1(αj+βj)
T . We note that the normalization procedure

is considered part of the RL environment, i.e. no gradients are passed through it. In essence, it
becomes part of the reward function. This requires us to slightly re-define the meaning of the
policy: it generates the bare protocol durations before the normalization; to minimize energy, the
durations need the extra normalization.

2. SN (κ, ξ2) is short-hard notation for Gaussian distribution N (κ, ξ2) under the sigmoid transformation f(x).
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We mention in passing that this is not the only way to hold the protocol duration T fixed:
alternatives include using the constraint to fix the last protocol duration βp, or the addition of an
extra penalty term to the reward function, cf. App. E.

2.4. Quantum Approximate Optimization Ansatz based on Counter-Diabatic Driving

In conventional QAOA, there are two possible gates, corresponding to the two unitaries Uj =
exp(−iαjHj), j = 1, 2. Therefore, there exist only two distinct sequences of unitaries: τd

1 =
U1U2U1U2 · · · and τd

2 = U2U1U2U1 · · · . A generalization of this ansatz was considered in Ref. (Yao
et al., 2020b), where an RL agent was given the complex combinatorial task to construct the se-
quence of unitaries τd, out of a predefined set Ad of |Ad| gates/unitaries. For the gate duration no-
tation, we will use αj 3 for all durations instead of alternating αj , βj due to a general ansatz. This set
can, in principle, be chosen arbitrarily; however, one can also make a more physics-informed choice,
e.g., inspired by counter-diabatic driving in the case of quantum many-body systems [cf. App. A]. In
the latter case, the resulting generalized algorithm, called CD-QAOA, was demonstrated to drasti-
cally enhance the variational ansatz of QAOA when applied to many-body quantum chains, allowing
for shorter circuit depths at no performance cost (Yao et al., 2020b).

Similar to PG-QAOA, CD-QAOA does not use the quantum wavefunction to perform the op-
timization, and the state is sj = (ad

1 , · · · , ad
j−1) at episode step j. Rewards are given once per

episode in the end, and are defined by the (negative) energy density. However, the action space is
given by the set of |Ad| unitary gates from which the protocol sequence τd are selected; it does
not involve the continuous protocol durations which are found as part of the RL environment. In
this study, we use the gradient-free Powell algorithm (Powell, 1964) instead of the gradient-based
SLSQP algorithm (Kraft et al., 1988) presented in the original CD-QAOA paper.

Apart from the low-level optimization mentioned above, CD-QAOA adopts a two-level opti-
mization schedule (Li et al., 2020; Melnikov et al., 2020): high-level discrete optimization is used
to construct the optimal sequence τd out of the available set of unitaries. For this purpose, in
Ref. (Yao et al., 2020b), it was suggested to employ Proximal Policy Optimization (Schulman et al.,
2017) (PPO), an advanced variant of policy gradient, aided by a deep autoregressive neural network
to implement causality:

πd
θ

(
ad

1 , a
d
2 , · · · , ad

q

)
= πd

θ

(
ad

1

) q∏
j=2

πd
θ

(
ad
j | ad

1 , · · · , ad
j−1

)
. (5)

Each factor in the product above is a categorical distribution over the action space. We point out that
the search for the optimal sequence τd represents a discrete optimization problem. This should be
contrasted with the low-level continuous optimization employed by QAOA to find the optimal du-
rations {αj}qj=1, carried out using the Powell solver. Since the Powell solver only handles bounded
optimization, we apply the same normalization trick to enforce the total duration constraint.

Given the complete protocol sequence τd = (ad
1 , · · · , ad

q ), we can construct the unitary process

U({αj}qj=1, τ
d)=

q∏
j=1

Uτdj
(αj) (6)

3. αj represents acj after normalization
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Method QAOA PG-QAOA CD-QAOA RL-QAOA

protocol sequence
7 7 ∇-free

optimization (discrete)
∇-free

gate durations ∇-free ∇-free ∇-free
optimization (continuous)

∇-free

RL optimization 7 continuous discrete continuous & discrete

noise-robust 7 3 7 3

autoregressive 7 7 3 3

Table 1: Comparison between all four algorithms: QAOA, PG-QAOA, CD-QAOA and RL-QAOA.

which we use as a generalized QAOA ansatz. The sequences τd, and the durations {αj}qj=1 are
found by minimizing the energy density, cf. Eq. (2). In doing so, we impose an extra constraint that
the same action cannot be taken twice in a row, for otherwise one can consider a smaller sequence
length by adding the corresponding durations and optimizing them together.

In order to construct the unitary U({αj}qj=1, τ
d) from Eq. (6), the RL agent needs to select

the sequence τd of subprocess generators Ad. Hence, at every step j in the RL episode, the agent’s
action consists of a choice of a Hermitian operator Hτdj

∈ Ad. A suitable discrete actions space Ad

can be constructed using insights from counter-diabatic (CD) driving, cf. App. A.

3. Mixed Discrete-Continuous Policy Gradient using Deep Autoregressive Networks

Although RL is used as an optimizer in both PG-QAOA and CD-QAOA, it serves two fun-
damentally different purposes. In PG-QAOA it is employed for continuous optimization of the
protocol durations {αj}, while in CD-QAOA it is used to find the solution to the discrete combi-
natorial task of ordering the unitaries in the protocol sequence. In this section, we illustrate how to
combine the two aspects together into a unified monolithic RL-based algorithm.

We have seen that with the help of RL one can tremendously enhance the properties of the
QAOA ansatz in very different ways, cf. Table 1. For instance, PG-QAOA has the important desired
property that it is robust to noise. Moreover, it does a completely gradient-free optimization of the
continuous protocol durations. On the other hand, CD-QAOA, enhances the variational ansatz itself
by offering the appealing ability to select the order in which three or more unitaries can be applied
in the protocol sequence. Moreover, it also introduces an autoregressive deep neural network to
encode causality (i.e., which unitary is optimal at a given episode step depends on the unitaries
chosen hitherto). The imminent question arises as to whether we can design an algorithm which
makes the best of both worlds.

3.1. Autoregressive Policy Ansatz for Hybrid Discrete-Continuous Action Spaces

Recently, a number of studies have considered the problem of simultaneous discrete/continuous
control using RL (Kulkarni et al., 2016; Fan et al., 2019; Wei et al., 2018; Hausknecht and Stone,
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2016; Delalleau et al., 2019; Bester et al., 2019; Xiong et al., 2018; Fan et al., 2019; Wei et al., 2018;
Neunert et al., 2020). Following notation of Ref. (Masson et al., 2016), we describe the RL problem
within the framework of parametrized-action Markov decision processes (PAMDPs). The major
difference, compared to ordinary MDPs, is the definition of the action space: A = Ad ⊗ Ac =⋃
ad∈Ad,ac∈Ac(ad, ac), Ad = {Hj}|A

d|
j=1 , Ac = [0, 1], where |Ad| denotes the cardinality of the

discrete action set. As before, the state space contains all possible sequences of actions, and the
reward is the (negative) energy density of the quantum state, given once at the end of the protocol.

In this section, we present a unified continuous-discrete quantum control algorithm, called
RL-QAOA, based on a hybrid policy which optimizes simultaneously the discrete and continuous
degrees of freedom. The policy can be decomposed as a product of two coupled auxiliary policies
– one for the continuous actions, πc

θ, and the other for the discrete actions, πd
θ:

πθ(τ) = πc
θ (τ c)πd

θ

(
τd
)
, (7)

where τν = (aν1 , . . . , a
ν
q ), ν ∈ {c,d} defines the discrete/continuous subsequence of actions in

each trajectory of length q. Denoting, as before, the RL state by sj =(a1, · · · , aj−1) with the hybrid
action ai=(ac

i , a
d
i ), we define a generalized continuous/discrete autoregressive model for the policy,

following Eq. (5). Adopting the short-hand notation πνθ
(
aνj | sj

)
= πνθ

(
aνj | a1, · · · , aj−1

)
, the

policy can be written as

πθ (a1, a2, · · · , aq)=

q∏
j=1

πd
θ

(
ad
j | sj

)
πc
θ

(
ac
j | sj , ad

j

)
. (8)

As expected, at every step j, the action ac
j is sampled from a continuous distribution, whose param-

eters depend on the discrete action ad
j selected at the same step j. This is natural, since different

discrete actions may require different corresponding continuous distribution parameters κ, ξ.
Additionally, similar to CD-QAOA, we impose a further restriction: no discrete action can

occur in the trajectory consecutively. We use a Sigmoid-Gaussian distribution to bound the samples
for the continuous actions, and normalize the durations αj ∝ ac

j ∼ πc
θ to fix the total protocol

duration such that
∑q

j=1 αj = T ; using the Beta distribution instead results in a similar performance
[cf. Fig. 4].

3.2. Deep Autoregressive Policy Network

We implement the policy ansatz variationally, using a deep neural network [a.k.a. policy net-
work]. In Fig. 2, we show a cartoon of the model for illustration purposes. The network consists
of base layers with intermediate output y, followed by three independent head layers with outputs
zp, zκ, zξ, respectively. The three heads learn the discrete probability distribution πd, and the pa-
rameters κ, ξ ∈ R+ which define the continuous probability distribution πc. Each head outputs a
vector of size |Ad| – so that the model can learn a set (κ, ξ) for every distinct discrete action. Notice
that each head output depends on the joint base layer parameters (W , b), but not on the parameters
(V , c) of any of the other two heads; thus, the base layers are shared by all three heads. In practice,
we find that a base layer, comprised of two hidden layers, can already achieve a good performance;
one can in principle add more layers for enhanced expressivity.
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Figure 2: Schematic representation of RL-QAOA and the deep autoregressive network for q = 4 (see text).
The time step j also corresponds to the gate index. The policy network is composed of (i) an
embedding layer to encode the continuous and discrete actions as input. (ii) The base layer im-
plements the causal autoregressive structure (see arrows). (iii) The heads are three-fold, one for
the discrete distribution parameters, and two for the continuous distribution parameters. A batch
of actions are sampled to evolve the quantum state and compute the negative energy density as a
reward. Proximal hybrid Policy Optimization (PPO) is used to update the policy network. The
pseudocode for RL-QAOA is shown in Algorithm 1.

The above description focuses on a single episode step j out of a total of q steps in an episode.
The autoregressive feature of the ansatz can then be built in, by allowing the outputs of the base
layers from previous steps to become inputs into the layers at subsequent episode steps [Fig. 2].

Let us denote the input to the autogressive network by (x1, x2, · · · , xq), and the weights and
bias parameters of the base layer by Wj ∈ Rdh×(j−1)|Ad| and bj ∈ Rdh , respectively, where dh is the
hidden dimension. Then, the intermediate output (y1, y2, · · · , yq) of the base layer reads as

yj =g(Wjx<j + bj), j=1, 2, · · · q, (9)

where x<j = (xj−1, · · · , x1)T ∈ R(j−1)|Ad| denotes the input of all previous steps preceding step
j; for j=1, we set Wjx<j + bj =bj .4 We use ReLU nonlinearities g(·).

The output of the base layer (y1, y2, · · · , yq) can be viewed as an input to the three-head layer.
The three-head layer contains three heads with independent weights V p

j , V
κ
j , V

ξ
j ∈ R|Ad|×jdh and

biases cpj , c
κ
j , c

ξ
j ∈ R|Ad|. The three-head layer output, (z1, z2, · · · , zq), are the parameters for the

discrete and continuous distributions: zpj are the categorical distribution parameters; zκj and zξj are
the two parameters for the sigmoid-Gaussian distribution [cf. App. C.1]:

zpj =log
(

SoftMax(V p
j y≤j + cpj )

)
, zκj =V κ

j y≤j + cκj , zξj =exp
(
V ξ
j y≤j + cξj

)
, (10)

4. In practice, implementing the autoregressive constraint <j can be achieved using masks (one for each set of weights).
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where y≤j = (yj , · · · , y1)T ∈ Rjdh , and dh is the hidden layer width.5 To define a categorical

distribution, we use a SoftMax6 nonlinarity: SoftMax(v)[i] = exp(v[i])/
∑|Ad|

k=1 exp(v[k]), where
v=V p

j y≤j + cpj ∈ R|Ad|, and [·] takes the index; we learn the log-probability to achieve a resolution
over a few orders of magnitude, and to stabilize the learning process.

We apply ancestral sampling to draw actions from the autoregressive policy. Starting from the
heads layer at step j = 1, we first sample ad

1 ∼ π(ad
1)=Categorical(exp(zp1)); we use the sampled

discrete action ad
1 to look up the corresponding parameters κ = zκ1 [ad

1 ] and ξ = zξ1[ad
1 ] 7 for the con-

tinuous action distribution. Then we sample the duration ac
1 ∼ π(ac

1|ad
1)=SN

(
zκ1 [ad

1 ], (zξ1[ad
1 ])2
)

.

The sampling output is passed as an input at the second step j = 2. To do this, we use an embedding8

for (ad
1 , a

c
1) represented by the variable x1, where x1[i] = ac

1 if i = ad
1 , and x1[i] = 0 otherwise.

Going on, we repeat the process: we sample successive actions ad
2 , a

c
2 ∼ π(ad

2 |x1), π(ac
2|x1, a

d
2).

The sampling, or forward pass, through the network is then repeated q times, until we reach the end
of the episode; thus, at step j we have ad

j , a
c
j ∼ π(ad

j |x<j), π(ac
j |x<j , ad

j ). This gives the trajectory
τ of mixed discrete-continuous actions. Note that the time complexity of the process isO(q×|Ad|).

3.3. Proximal Hybrid Policy Optimization

The set of all weights and biases, θ = {Wj , bj , V
p
j , V

κ
j , V

ξ
j , c

p
j , c

κ
j , c

ξ
j}
q
j=1, defines the learn-

able parameters of the autoregressive policy network. We now discuss how to compute the policy
gradients and define an update rule for θ.

Our goal is to maximize the RL objective within the trust region (Schulman et al., 2015) for
the continuous and discrete policy:

Eτ
[
πθ (τ)

πθt (τ)
Aθt(τ)

]
, subject to Eτ

[
DKL

[
πνθt (·) , πνθ (·)

]]
≤ δν , (11)

where Eτ [ · ] is a shorthand notation for Eτ=(a1,··· ,aq)∼πθt [ · ]. The Kullback–Leibler (KL) divergence

is defined as DKL(πc
θt
, πc

θ) =
∫
x∈Ac π

c
θt

(x) log

(
πc
θt

(x)

πc
θ(x)

)
dx, and similarly for ν = d; δν defines a

constraint on the size of the discrete/continuous policy updates in distribution space. Here, θt
denotes the parameters before the update, usually the parameters from the last update, i.e. t-th
iteraion; Aθt(τ) = R(τ) − b is the advantage function – the return (negative energy density) for a
given trajectory w.r.t. the baseline b.

In practice, we utilize a clipped surrogate RL objective (Schulman et al., 2017) with two clip-
ping parameters εν . The idea is to update the continuous and discrete policies adaptively using
different εν during policy optimization. This allows for the discrete policy πd

θ to change more
quickly/more slowly as compared to the continuous policy πc

θ. Hence, the hybrid PPO RL objective
reads as

J (θ) = Eτ
[
Gd(τd;θ, εd) + Gc(τ c;θ, εc)

]
+ β−1

S (Sd + Sc), (12)

5. Note that here we are able to use the ”=” sign because the previous layer of operation has already filtered out the
”=” sign for those steps.

6. Note that this function is not operated element-wise like the others; it is applied on the whole vector of dimension
|Ad|).

7. Here, [ad1 ] means taking the component by index.
8. The embedding can be viewed as one-hot encoding of the discrete action ad1 but multiplied by the continuous action

value ac1.
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with

Gν(τν ;θ, εν) = min

{
ρνθ(τν)Aνθt(τ

ν), clip (ρνθ(τν), 1− εν , 1 + εν)Aνθt(τ
ν)

}
, (13)

where ρνθ(τν) =
πνθ(τν)

πνθt
(τν) is the importance weight ratio of two policies associated with trajectory τν .

The clip function, defined as clip(ρ, x, y) = max
(

min (ρ, x) , y
)

sets the value of ρθ to be within
the interval [x, y], and constrains the likelihood ratio from Eq. (11) to the range [1 − ε, 1 + ε]. The
entropy terms [right-most part of Eq. (12)] are discussed below. Our goal is to find those parameters
θ which maximize J (θ).

To understand the hybrid PPO algorithm, consider two limiting cases first. In the extreme case
when εd → 0, i.e. the discrete policy πd

θ is kept fixed, our algorithm reduces to PG-QAOA. On
the other hand, when εc → 0, the continuous policy is kept fixed; if this fixed policy additionally
corresponds to the greedy “expert policy” defined by the Powell optimizer, the algorithm is reduced
to CD-QAOA. In this sense, for finite values of εc, εd > 0, RL-QAOA can be viewed as a smooth
interpolation between PG-QAOA and CD-QAOA.

In order to incentivize the agent to explore the action space during the early stages of training,
we also added entropy to the RL objective, cf. Eq. (12). The entropy for a discrete/continuous
policy is defined as Sd(πd) = −∑x∈X π

d(x) log πd(x) or Sc(πc) = −
∫
x∈X π

c(x) log πc(x)dx,
respectively. The coefficient β−1

S in Eq. (12) defines an effective temperature, which we anneal
with increasing the number of iterations. It is easy to see that the total entropy S = Sd + Sc

associated with the hybrid policy consists of both discrete Sd =
∑q

j=1 Ea<j∼πθ Sd
(
πd
θ( · |a<j)

)
,

and continuous Sc =
∑q

j=1 Ea<j∼πθ ,adj∼πd
θ
Sc
(
πc
θ( · |a<j , ad

j )
)

contribution. The RL agent has to
maximize the total expected return while also maximizing the entropy associated with the policy.

In RL, there are two common ways to incorporate entropy in practice (Levine, 2018): (i) when-
ever one can compute a closed-form expression for the entropy, entropy is added as a separate term
to the objective which can be thought of as entropy regularization. Note that it is the autoregresssive
structure that makes it possible to obtain the exact value for the entropy Sd: for πd

θ( · |a<j) =

Categorical
(

exp
(
zpj

))
, the entropy is Sd

(
πd
θ( · |a<j)

)
=−∑|Ad|

k=1 zpj [k] · exp
(
zpj [k]

)
. (ii) Often

times it is not always possible to compute the value for the entropy, since the expression is not
analytically tractable; in such cases, the maximum entropy formulation (Haarnoja et al., 2018b,a,
2017) still allows us to add to the reward a empirical estimate of the entropy, known as an entropy
bonus: Rc(τ) ← Rc(τ) + β−1

S Eac∼πc
θ

[
− log πc

θ

]
. In this study, we add an entropy bonus to take

into account the entropy of the continuous policy πc.

4. Applications and Noise Models

4.1. Quantum Ising Model

To test the performance of RL-QAOA, we investigate the ground state preparation problem
for a system of N interacting qubits (i.e. spin-1/2 degrees of freedom), described by the Ising
Hamiltonian introduced in Eq. (3):

H=H1+H2, H1=
N∑
i=1

JSzi+1S
z
i +hzS

z
i , H2 =

N∑
i=1

hxS
x
i ,
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We use periodic boundary conditions and work in the zero momentum sector of positive parity,
which contains the antiferromagnetic ground state. We emphasize that this model is non-integrable,
i.e., it does not have an extensive number of local integrals of motion; as a consequence, no closed-
form analytical description is known for its eigenstates and eigenenergies. Moreover, the lack of
integrability results in chaotic quantum dynamics. This makes manipulating it in the presence of
noise particularly challenging.

In the following, J = 1 sets the energy unit, hz/J = 0.4523 and hx/J = 0.4045. In the
thermodynamic limit, N →∞, these parameters are close to the critical line of the model, where a
quantum phase transition occurs in the ground state between an antiferromagnet and a paramagnet;
for the finite system sizes we can simulate, the critical behavior is smeared out over a small finite
region. In Ref. (Matos et al., 2021), using QAOA, it was shown that this region of parameter space
appears most challenging in the noise-free system.

We initialize the system in the z-polarized product state |ψi〉= |↑ · · · ↑〉, and aim to prepare
the ground state of H . We use the negative energy density −E = −E/N as a reward for the
RL agent, cf. Eq. (2), which is an intensive quantity as the number of qubits N increases. In this
study, we are mostly interested in exploring the behavior of the system subject to various kinds of
noise/uncertainty. Our primary focus is quantifying the effects of noise on the achievable fidelity,
w.r.t. the noise-free values. We deliberately select a fixed duration of JT =10 far from the adiabatic
regime, such as to exhibit the benefits of the CD-QAOA ansatz over QAOA [cf. App. D].

We point out that, working at a fixed duration T , it is not always possible to achieve high-
fidelity ground states. This is easy to see for decoupled qubits, where the magnitude of the spin
precession frequency on the Bloch sphere (so-called Larmor precession frequency) is set by the
fixed strength of the magnetic field (hx, 0, hz): hence, fixing the total protocol duration T , it may
be physically impossible to reach the target state in the allotted time. This behavior leads to the
notion of the quantum speed limit (QSL) – the minimum time required to prepare the ground state
with unit fidelity.

4.2. Spin-1 Heisenberg Model

To demonstrate that RL-QAOA applies equally well to a system other than the Ising model, we
consider the noisy state preparation in the spin-1 Heisenberg chain, described by the Hamiltonian

H=H1+H2, H1 =J
N∑
j=1

(Sxj+1S
x
j +Syj+1S

y
j ), H2 = ∆

N∑
j=1

Szj+1S
z
j . (14)

Here, J is the interaction in the xy-plane and ∆ characterizes the anisotropy. The model features a
rich ground state phase diagram, including topological and long-range ordered phases (Chen et al.,
2003; Pollmann et al., 2010; Langari et al., 2013). Such spin-1 systems present natural models to
simulate on qutrit quantum computing devices (Blok et al., 2021; Ramasesh et al., 2019).

We initialize the system in the antiferromagnetic initial state |ψi〉 = P | ↑↓↑↓ · · · 〉, with P
the projector onto the zero-momentum sector of positive parity; we target the ground state of the
Heisenberg model in the presence of noise at ∆/J=−0.5, and fix the total protocol duration to
JT =3.
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4.3. Three Noise Models

When operating present-day quantum devices, one is confronted with various sources of un-
certainty. Since the exact form and details depend on the peculiarities and particularities of the
underlying experimental platform, it is desirable to construct algorithms capable of learning such
details without extra human input. In this study, our RL agent learns in a simulator. To mimic the
diversity of uncertain processes that can occur, we consider three types of noise.

4.3.1. CLASSICAL MEASUREMENT GAUSSIAN NOISE

Noise naturally occurs due to imperfect measurements. For instance, the measurement signal
is often present in the form of currents and voltages, whose values can only be determined within the
resolution of the measurement apparatus. In practice, experimentalists perform a large number of
measurements and average the result in the end to obtain an estimate for the value of an observable.
By the central limit theorem, in the limit of large sample sizes, the statistics of the measurement data
is approximated by a Gaussian distribution. To model this behavior, we use small Gaussian noise to
add uncertainty in the reward signal: Eγ({αi}qi=1, τ

d) = E({αi}qi=1, τ
d)+εγ , where εγ ∼ N (0, γ2).

4.3.2. QUANTUM MEASUREMENT NOISE

In quantum mechanics, there is another intrinsic kind of noise, which arises due to the quantum
nature of the controlled system. Consider the evolved state |ψ(T )〉 = U({αj}qj=1, τ)|ψi〉 at the end
of the protocol. The expected measurement for the energy density E = N−1〈ψ(T )|H|ψ(T )〉 is
obtained within a quantum uncertainty, ∆E = N−1

√
〈ψ(T )|H2|ψ(T )〉 − 〈ψ(T )|H|ψ(T )〉2, set

by the energy variance in the final state. In the limit of a large number of measurements, quantum
noise can be simulated using a Gaussian distribution EQ({αi}qi=1, τ

d) = E({αi}qi=1, τ
d) + εQ,

where εQ ∼ N (0,∆E2). Note that the width of the Gaussian depends on the final state |ψ(T )〉: in
the early stages of training, |ψ(T )〉 is typically far away from any of the eigenstates ofH; therefore,
the energy variance ∆E will be large and finite. However, towards the later training stages, when
the agent learns to prepare a state close to the target ground state, the energy variance will go down.
Hence, one can think of the quantum noise as a Gaussian noise with a time-dependent strength.

4.3.3. NOISE ARISING FROM GATE ROTATION ERRORS

Finally, we also consider the uncertainty in implementing the unitaries Ui. We focus on
gate rotation errors (Sung et al.), caused by imperfections in the durations αi: Eδ({αi}qi=1, τ) =
E({αi + εi}qi=1), where εi ∼ N (0, δ2). This defines a simplified error model for coherent control,
an important source of errors in present-day state-of-the-art quantum computing hardware (Arute
et al., 2019), and which is especially pertinent to quantum computers which are utilized frequently
but calibrated only periodically.

5. Numerical Experiments and Results

To evaluate the performance of the trained agent, we eliminate the uncertainty associated with
the probabilistic nature of the policy: we take the discrete action which maximizes the categorical
distribution πd, and only keep the mean of the continuous distribution πc, setting its width to zero.
This defines a natural greedy policy to test the ability of the RL agent.
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Figure 3: Ising spin-1/2 model: energy minimization in the Ising model against different noise levels with
circuit depths p=q/2=4 and protocol duration JT =10 for four different optimization methods:
QAOA, PG-QAOA, CD-QAOA, RL-QAOA. The initial and target states are |ψi〉 = | ↑ · · · ↑〉
and |ψ∗〉 = |ψGS(H)〉 for hz/J = 0.4523 and hx/J = 0.4045. The alternating unitaries for
conventional QAOA and PG-QAOA are generated by Ad = {H1, H2}; for CD-QAOA and RL-
QAOA, we extend this set using adiabatic gauge potential terms toAd = {H1, H2;Y,X|Y, Y |Z}.
The system sizes are N = 4, 6, 8. The continuous policies in PG-QAOA and RL-QAOA are both
parametrized by Sigmoid-Gaussian distributions.

We performed a number of numerical experiments to study the effect of the noise on the perfor-
mance of the four algorithms QAOA, PG-QAOA, CD-QAOA and RL-QAOA, for the three different
sources of uncertainty: classical and quantum measurement noise, and gate rotation noise. We vary
both the noise strength, and we look at three different system sizes for two protocol durations each.
The results of these experiments can be summarized as follows.

Figure 3 shows the best achievable energy at a protocol duration JT = 10 against different
noise types and system sizes of the Ising model: the top row shows data for various measurement
noise strengths, with the shaded area marking the special case of quantum noise; the noise strength
is measured in percentages of the achievable ground state energy density: e.g., a noise strength of
γ = 0.3 corresponds to an average deviation from the actual energy of about 30%. The bottom row
displays the results when varying the gate noise strength. Here, the noise strength is defined as a
percentage of the mean gate duration T/q. The three columns correspond to system sizes N = 4
(left), N = 6 (middle) and N = 8 (right).

When T < TQSL is chosen below the QSL, we find that QAOA and PG-QAOA fail to reach
the ground state in the time allotted, as a result of having an overconstrained control space Ad =
{H0, H1}. Nonetheless, the noise-robust character of PG-QAOA becomes pronounced at increased
values of the noise strength. Since the initial quantum state is far away from the target ground
state, the best ratio E/EGS found by QAOA can even be negative. The JT = 10 duration exhibits
the advantage of using the generalized QAOA ansatz brought in by CD-QAOA: suitably enlarging
the discrete action space Ad = {H1, H2, Y,X|Y, Y |Z} unlocks paths in Hilbert space which are
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Figure 4: Heisenberg spin-1 model: energy minimization for four different optimization methods:
QAOA, PG-QAOA, CD-QAOA, RL-QAOA. The left column shows measurement noise
(including quantum), and the right column displays gate noise. The alternating uni-
taries for conventional QAOA and PG-QAOA are generated by Ad = {H1, H2}; for
CD-QAOA and RL-QAOA, we extend this set using adiabatic gauge potential terms to
Ad = {H1, H2, Z,X|X;Y,XY, Y Z,X|Y−XY, Y |Z−Y Z}. The model parameters are
∆/J=−0.5, T =3, and the system size is N = 8. The continuous policies in PG-QAOA
and RL-QAOA are both parametrized by Beta distributions.

inaccessible to QAOA. Hence, CD-QAOA and RL-QAOA find the largest rewards in the noise-free
case. A large noise strength reduces visibly the ability of CD-QAOA to find the ground state, with
the performance being particularly bad for quantum measurement noise (Q). However, the hybrid
policy optimizer allows RL-QAOA to emerge as a noise-robust algorithm, agnostic to the source of
noise applied to the system.

In Fig. 4, we show the same comparison for the anisotropic Heisenberg chain ofN = 8 qutrits.
Clearly, RL-QAOA achieves much better results than QAOA and PG-QAOA, due to the suitably
chosen enhanced space of actions. With the exception of the noise-free case, we find that RL-
QAOA outperforms CD-QAOA on the measurement noise problems (left panel), and performs on
par with it for the gate noise (right panel). Thus, RL-QAOA shows superior performance in the
presence of noise also for the Heisenberg model.

6. Conclusion and Outlook

In summary, we presented RL-QAOA – a versatile and noise-robust quantum control algo-
rithm based on the QAOA variational ansatz. The algorithm inherits valuable features from its
ancestors: (i) the noise-robust property of PG-QAOA allows us to find optimal durations proba-
bilistically. (ii) the generalized QAOA ansatz of CD-QAOA makes it possible to select the order in
which a set of unitaries appears in the control sequence. While we focused on physically motivated
unitaries, we emphasize that the ansatz is completely general and applicable to a large variety of
unitaries/quantum gate sets useful for both theoretical and experimental studies. We had to modify
these “ancestors” accordingly: in PG-QAOA we introduced a mechanism to fix the total protocol
duration and introduced a stochastic policy based on the compactly supported Beta function; in
CD-QAOA we changed the low-level optimizer to gradient-free Powell, as opposed to the gradient-
based SLSQP which did not give a reasonable performance in the presence of noise. RL-QAOA
extends PG-QAOA and CD-QAOA with both the use of a generalized autoregressive architecture
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which incorporates the parameters of the continuous policy, and the derivation of an extension of
Proximal Policy Optimization applicable to hybrid continuous-discrete policies.

We tested the performance of RL-QAOA using the unitary dynamics of quantum Ising and
Heisenberg chains subject to various sources of noise: classical and quantum measurement noise
as well as uncertainty leading to errors in the application of quantum unitary gates. In particular,
we demonstrated that RL-QAOA successfully outperforms its ancestors in the highly-constrained
non-adiabatic regime, irrespective of the noise model selected. Thus, RL-QAOA is not only noise-
robust but also agnostic to the physical source of noise. This opens up the exciting possibility of
using machine learning to ‘learn’ the particularities of noisy experimental environments, which of-
ten depend on the chip architecture and can even change in the course of exploitation. However,
the presented results are obtained using numerical simulations based on certain theoretical assump-
tions; it remains to test the performance of RL-QAOA on realistic noisy intermediate-scale quantum
computing devices.

The RL-QAOA is a versatile method that can be extended along several directions. For in-
stance, the current version of RL-QAOA defines a fixed sequence/protocol length. However, the
algorithm is versatile enough to accommodate a variable length of the protocols after a slight mod-
ification. To do so, one can simply add a “stop” action to the discrete action set Ad. If the agent
happens to choose the stop action, then the episode comes to an end immediately and we measure
the energy of the evolved quantum state.

There also exist a number of exciting alternatives for the policy network architecture to ex-
plore. Although it has to incorporate temporal causality, notice that the architecture is not limited to
the autoregressive choice used in this study; e.g., it can be generalized to a recurrent neural network
(RNN), a Long Short Term Memory (LSTM) network, or a transformer with the attention mech-
anism (Vaswani et al., 2017) and all its modern variants (Kitaev et al., 2020; Choromanski et al.,
2020; Wang et al., 2020; Tay et al., 2020). In the present study, we chose the autoregressive network
for its sheer simplicity. Moreover, the continuous policy head can be generalized to capture distri-
butions with more than two modes using the normalizing flow method, which would additionally
boost the expressivity of the policy (Tang and Agrawal, 2018).

Acknowledgments

We wish to thank Vitchyr Pong for valuable discussions. This work was partially supported by
the Department of Energy under Grant No. DE-AC02-05CH11231 and No. DE-SC0017867 (L.L.,
J.Y.), and by the National Science Foundation under the NSF QLCI program through grant number
OMA-2016245 (L.L.). M.B. was supported by the Bulgarian National Science Fund within National
Science Program VIHREN, contract number KP-06-DV-5, and the Marie Sklodowska-Curie grant
agreement No 890711.

We used the Powell method (Powell, 1964) implemented in SciPy (Virtanen et al., 2020)
for the QAOA solver; we used W&B (Biewald, 2020) to organize and analyze the experiments.
The reinforcement learning networks are implemented in NumPy(Harris et al., 2020), and Tensor-
Flow (Abadi et al., 2015) and TensorFlow Probability (Dillon et al., 2017); the quantum systems are
simulated in Quspin (Weinberg and Bukov, 2017, 2019). We thank Berkeley Research Computing
(BRC) for providing the computational resources.

17

https://github.com/weinbe58/QuSpin#quspin


RL-QAOA: REINFORCEMENT LEARNING FOR QUANTUM CONTROL USING AUTOREGRESSIVE POLICY

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
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Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical sciences. Rev.
Mod. Phys., 91:045002, 2019. doi: 10.1103/RevModPhys.91.045002. URL https://link.
aps.org/doi/10.1103/RevModPhys.91.045002.

Juan Carrasquilla. Machine learning for quantum matter. Advances in Physics: X, 5(1):
1797528, 2020. doi: 10.1080/23746149.2020.1797528. URL https://doi.org/10.
1080/23746149.2020.1797528.

Juan Carrasquilla and Roger G Melko. Machine learning phases of matter. Nature Physics, 13(5):
431–434, 2017.

Juan Carrasquilla and Giacomo Torlai. Neural networks in quantum many-body physics: a hands-on
tutorial. arXiv preprint arXiv:2101.11099, 2021. URL https://arxiv.org/abs/2101.
11099.

Chunlin Chen, Daoyi Dong, Han-Xiong Li, Jian Chu, and Tzyh-Jong Tarn. Fidelity-based prob-
abilistic q-learning for control of quantum systems. IEEE transactions on neural networks and
learning systems, 25(5):920–933, 2013. doi: 10.1109/TNNLS.2013.2283574.

Wei Chen, Kazuo Hida, and BC Sanctuary. Ground-state phase diagram of s= 1 xxz chains with
uniaxial single-ion-type anisotropy. Physical Review B, 67(10):104401, 2003. doi: 10.1103/
PhysRevB.67.104401.

19

https://arxiv.org/abs/2006.16269
https://link.aps.org/doi/10.1103/PhysRevB.98.224305
https://link.aps.org/doi/10.1103/PhysRevB.98.224305
https://link.aps.org/doi/10.1103/PhysRevX.8.031086
https://link.aps.org/doi/10.1103/PhysRevX.8.031086
https://link.aps.org/doi/10.1103/PhysRevA.84.022326
https://link.aps.org/doi/10.1103/PhysRevA.84.022326
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1080/23746149.2020.1797528
https://arxiv.org/abs/2101.11099
https://arxiv.org/abs/2101.11099


RL-QAOA: REINFORCEMENT LEARNING FOR QUANTUM CONTROL USING AUTOREGRESSIVE POLICY

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers, 2020.

Po-Wei Chou, Daniel Maturana, and Sebastian A. Scherer. Improving stochastic policy gradients
in continuous control with deep reinforcement learning using the beta distribution. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 834–843. PMLR, 2017. URL http://proceedings.
mlr.press/v70/chou17a.html.

Simona Colabrese, Kristian Gustavsson, Antonio Celani, and Luca Biferale. Flow navigation by
smart microswimmers via reinforcement learning. Physical review letters, 118(15):158004, 2017.

Mogens Dalgaard, Felix Motzoi, Jesper Hasseriis Mohr Jensen, and Jacob Sherson. Hessian-based
optimization of constrained quantum control. Physical Review A, 102(4):042612, 2020a.

Mogens Dalgaard, Felix Motzoi, Jens Jakob Sorensen, and Jacob Sherson. Global optimization of
quantum dynamics with alphazero deep exploration. npj Quantum Information, 6(1), 2020b. doi:
10.1038/s41534-019-0241-0.

Olivier Delalleau, Maxim Peter, Eloi Alonso, and Adrien Logut. Discrete and continuous action
representation for practical rl in video games. arXiv preprint arXiv:1912.11077, 2019.

Mustafa Demirplak and Stuart A Rice. Assisted adiabatic passage revisited. The Journal of Physi-
cal Chemistry B, 109(14):6838–6844, 2005. URL http://pubs.acs.org/doi/abs/10.
1021/jp040647w.

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow distributions. arXiv
preprint arXiv:1711.10604, 2017. URL https://arxiv.org/abs/1711.10604.
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Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Pro-
ceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, pages
1106–1114, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
3675–3683, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
f442d33fa06832082290ad8544a8da27-Abstract.html.

A Langari, F Pollmann, and M Siahatgar. Ground-state fidelity of the spin-1 heisenberg chain
with single ion anisotropy: quantum renormalization group and exact diagonalization approaches.
Journal of Physics: Condensed Matter, 25(40):406002, 2013. doi: 10.1088/0953-8984/25/40/
406002.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Li Li, Minjie Fan, Marc Coram, Patrick Riley, Stefan Leichenauer, et al. Quantum optimization
with a novel gibbs objective function and ansatz architecture search. Physical Review Research,
2(2):023074, 2020. doi: 10.1103/PhysRevResearch.2.023074.

23

http://www.sciencedirect.com/science/article/pii/S1090780704003696
http://www.sciencedirect.com/science/article/pii/S1090780704003696
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.1103%2Fphysrevlett.125.170603
https://doi.org/10.1103%2Fphysrevlett.125.170603
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html


RL-QAOA: REINFORCEMENT LEARNING FOR QUANTUM CONTROL USING AUTOREGRESSIVE POLICY

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, and Linfeng
Zhang. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab
initio accuracy. Computer Physics Communications, 259:107624, feb 2021. doi: 10.1016/j.cpc.
2020.107624. URL https://doi.org/10.1016%2Fj.cpc.2020.107624.

Alicia B Magann, Matthew D Grace, Herschel A Rabitz, and Mohan Sarovar. Digital quantum
simulation of molecular dynamics and control. arXiv preprint arXiv:2002.12497, 2020.

Alicia B. Magann, Christian Arenz, Matthew D. Grace, Tak-San Ho, Robert L. Kosut, Jarrod R.
McClean, Herschel A. Rabitz, and Mohan Sarovar. From pulses to circuits and back again:
A quantum optimal control perspective on variational quantum algorithms. PRX Quantum, 2
(1), jan 2021. doi: 10.1103/prxquantum.2.010101. URL https://doi.org/10.1103%
2Fprxquantum.2.010101.

Warwick Masson, Pravesh Ranchod, and George Dimitri Konidaris. Reinforcement learning with
parameterized actions. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, pages 1934–1940. AAAI Press, 2016. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI16/paper/view/11981.

Shumpei Masuda and Katsuhiro Nakamura. Fast-forward of adiabatic dynamics in quantum me-
chanics. In Proceedings of the Royal Society of London A: Mathematical, Physical and En-
gineering Sciences, page rspa20090446. The Royal Society, 2009. URL http://rspa.
royalsocietypublishing.org/content/466/2116/1135.
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Appendix A. Discrete Action Space inspired by Counter-Diabatic (CD) Driving

In Sec. 2.4, we discussed a natural way to suitably generalize the QAOA ansatz, by introducing
a second discrete variational problem: to construct the unitary

U({αj}qj=1, τ
d) =

q∏
j=1

exp
(
−iαjHτdj

)
,

cf. Eq. (6), our RL agent has to choose the sequence τd of gates exp
(
−iαjHτdj

)
. Hence, at every

step j during the RL episode, the agent’s action consists of a choice of (i) a Hermitian operator
Hτdj
∈ Ad, in addition to (ii) a continuous duration αj ∈ Ac to apply Hj for.

Naturally, the set of discrete actions Ad consists of the available possible controls in an ex-
periment. In Refs. (Yao et al., 2020b; Hegade et al., 2021; Ding et al., 2021), it was shown that
a particularly suitable set of actions for ground state preparation in quantum many-body systems,
is given by terms appearing in the series of the variational adiabatic gauge potential, designed for
many-body counter-diabatic driving (Sels and Polkovnikov, 2017). These terms provide shortcuts
in the Hilbert space that may significantly decrease the time required to prepare the ground state.

For brevity, here we just list the generator set Ad for the spin−1/2 Ising model, cf. Eq. (3),
which the RL agent has access to, and refer the interested readers to Ref. (Yao et al., 2020b) for
more details:

Ad
Ising = {H1, H2, Y,X|Y, Y |Z}, (15)

with Y =
∑

i S
y
i , X|Y =

∑
i S

x
i S

y
i+1 +Syi S

x
i+1, and Y |Z =

∑
i S

y
i S

z
i+1 +Szi S

y
i+1; H1, H2 are de-

fined in Eq. (3). A reader with an experienced eye will notice that, besides the conventional QAOA
generators H1 and H2, the extra terms we consider consist of the leading order local imaginary-
valued terms one can write down for the spin chain. This general rule of thumb is valued for any
real-valid Hamiltonian H .

For the spin-1 Heisenberg model, the set of discrete actions reads

Ad
Heisenberg = {H1, H2, Z,X|X;Y,XY, Y Z,X|Y −XY, Y |Z−Y Z}, (16)

with H1, H2 are defined in Eq. (14); Z =
∑

i S
z
i , X|X =

∑
i S

x
i S

x
i+1, and the imaginary-valued

gauge potential constituent terms: Y =
∑

i S
y
i , XY =

∑
i S

x
i S

y
i +Syi S

x
i , Y Z =

∑
i S

y
i S

z
i +Szi S

y
i

andX|Y =
∑

i S
x
i [Syi+1−aS

y
i ]+Syi [Sxi+1−aSxi ], and Y |Z =

∑
i S

y
i [Szi+1−bSzi ]+Szi [Syi+1−bS

y
i ],

where the constants a and b are introduced to orthogonalize the last five terms w.r.t. the Hilbert-
Schmidt norm. Here, the Sαi are the spin-1 operators. More details can be found in Appendix D of
Ref. (Yao et al., 2020b).

We emphasize that this is just one particular choice of Ad for each model. In practice, the
algorithm is agnostic to the discrete action space which is determined by the available controls for
the system of interest: e.g., on a quantum computer, these can be a universal set of gates, etc., or,
one can also consider the minimal complete pools from which recent studies construct hardware-
efficient ansätze (Tang et al., 2021) for Variational Quantum Eigensolver (VQE) on NISQ devices.

Appendix B. Pseudocode and Algorithm Hyperparameters

The pseudocode for RL-QAOA is outlined in Algorithm (1). The agent samples a batch of
actions from the autoregressive network. Then, the corresponding expected energy density is com-
puted using a classical simulator for the quantum dynamics. Below, we focus on the noise-free case.
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Algorithm 1 Autoregressive network based reinforcement learning: RL-QAOA
Input: batch size M , learning rate ηt, total number of iterations Titer, exponential moving average

coefficient m, entropy coefficient β−1
S , PPO gradient steps K.

1: Initialize the autoregressive network and initialize the moving average R̂=0.
2: for t = 1, .., Titer do
3: Autoregrssively sample a batch of hybrid actions of size M , denoted by B:

τ{k}=(a
{k}
1 , a

{k}
2 , · · · , a{k}q ) ∼ πθ (a1, a2, · · · , aq) , k = 1, 2, · · · ,M.

4: Measure the observables and use the negative energy density as the return and compute the
moving average of the return

Rk = −Ek = − 1

N
〈ψi|U †({a{k}j }

q
j=1)HU({a{k}j }

q
j=1)|ψi〉, R̂ = m·R̂+(1−m)· 1

M

M∑
k=1

Rk.

5: Compute the advantage estimates Ak = Rk − R̂
6: Initialize the parameter θ[1]

t+1 =θt.
7: for κ=1, ..,K do
8: Evaluate the samples’ likelihood using the parameter from the last iterations and current

iterations, i.e. π
θ
[κ]
t+1

(τν,{k}), πθt(τ
ν,{k}) and compute the importance weight

ρ
[κ],ν
k =π

θ
[κ]
t+1

(τν,{k})/πθt(τ
ν,{k}).

9: Using the advantage estimation and importance weight to compute
G[κ],d
k ,G[κ],c

k ,S [κ],d
k ,S [κ],c

k .
10: Compute the RL-QAOA objective Eq (12) and backpropagate to get the gradients.

∇θJ (θ
[κ]
t+1) =

1

M

∑
{a{k}j }qj=1∈B

∇θ

[
G[κ],d
k + G[κ],c

k + β−1
S (S [κ],d

k + S [κ],c
k )

]
.

11: Update weights θ[κ+1]
t+1 ← θ

[κ]
t+1 + ηt∇θJ (θ

[κ]
t+1).

12: end for
13: Update the parameter θt+1 ← θ

[K+1]
t+1

14: end for

Dealing with noise requires a trivial modification of the reward signal following Sec. 4.3. The base-
line for the reward is estimated through an exponential moving average. Finally, proximal policy
optimization is applied to update the agent’s policy.

We also conducted coarse hyperparameter sweeps to find the optimal values for the hyper-
parameters of RL-QAOA, cf. Table 2. We use a batch size of 128 to train the policy. The policy
network is optimized using Adam. The initial learning rate is set to 5× 10−4, which is typical when
training autoregressive networks; we employ a learning rate decay schedule which decreases by a
factor of 0.98 every 50 iterations. The Autoregressive network is implemented using uniform masks
and dense layers (Germain et al., 2015). The base layer (see Fig. 2) consists of two hidden layers
with 100 neurons each and the heads contain 3|Ad| neurons in total.

The agent is trained via proximal policy optimization (PPO). We use four PPO updates to
the policy network parameters per iteration. The clipping parameters are set as εc = 0.1 for the
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continuous policy, and εd = 10−3 for the discrete policy. We include entropy bonus to increase
exploration; the corresponding temperature schedule β−1

S starts at 1× 10−1, and drops by a factor
of 0.99 every 50 iterations.

Table 2: RL-QAOA Hyperparameters.

HYPERPARAMETER VALUE

OPTIMIZER ADAM (KINGMA AND BA, 2015)
LEARNING RATE (η{0}) 5× 10−4

LIKELIHOOD RATIO CLIP (εν ) 0.1 (εc)
0.001 (εd)

PPO EPOCHS (K) 4
HIDDEN UNITS (MASKED DENSE LAYER) [100, 100]

ACTIVATION FUNCTION RELU
BASELINE EXPONENTIAL MOVING AVERAGE (m) 0.95

LEARNING RATE ANNEALING STEPS 50
LEARNING RATE ANNEALING FACTOR 0.98

LEARNING RATE ANNEALING STYLE STAIRCASE

ENTROPY BONUS TEMPERATURE (β−1S,{0}) 1× 10−1

ENTROPY BONUS TEMPERATURE DECAY STEPS 50
ENTROPY BONUS TEMPERATURE DECAY FACTOR 0.99

ENTROPY BONUS TEMPERATURE DECAY STYLE SMOOTH
MINIBATCH SIZE (M ) 128

A typical learning curve in the noisy setting is shown in Fig. 5. Three quantities are recorded
to measure the performance of the agent. In the noise setting, these quantities correspond to the
ideal noise-free case. We use them only for the purpose of evaluation; during the training, the RL
agent only has access to the noisy rewards. These quantities are shown in terms of the energy ratio
with respect to the target ground state, so the possible maximum is upper bounded by one; since the
energy of a state can be either positive or negative, while the GS has a negative value, negative ratios
are possible. Figure 5 shows that the agent starts to pick up the learning signal around two thousand
iterations. After that, it slightly modifies the policy in order to achieve a higher reward. Here, the
mean reward stands for the sample mean of energy density at every iteration; the max reward is the
maximum over the sample; the history best is the best-encountered reward during the entire training
process.

Appendix C. A Comparison of Compactly Supported Distributions defining
Continuous Actions

C.1. Sigmoid Gaussian Distribution

In order to enforce the durations sampled from the continuous Gaussian policy to be bounded,
we apply the sigmoid function. Bounded actions are particularly useful in practice in order to be
able to normalize the durations to match the total protocol duration T ; otherwise, one would observe
a large variance (see main text).

To achieve this, we can apply the sigmoid function to the Gaussian distribution. In the fol-
lowing formula, we have x = f(y), where f(y) = 1

1+e−y is the sigmoid. We denote the original
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Figure 5: Spin-1/2 Ising model: training curves for RL-QAOA with energy minimization as a cost function.
The quantities in the main figure are noiseless evaluation, while in the inset are noisy measure-
ment. The noiseless quantities are only for the evaluation’s purpose, and the agent can only access
the noisy quantities (in the inset). The mean reward (blue curve) is the average energy ratio across
the minibatch sampled from the autoregressive policy; the max reward (orange curve) is taking
the maximum across the minibatch; the history best bookkeeps the best ever max reward during
the training. The total duration is T = 10 and the number of spin-1/2 particles is N = 8. The
discrete RL-QAOA action space is Ad = {H1, H2;Y,X|Y, Y |Z}, and we use q = 8. Here, the
noise is classic gaussian noise, with the noise level γ=0.1.

distribution as π0(y;κ, ξ) and the distribution after the transformation, as π(x;κ, ξ):

π(x;κ, ξ) = π0(y;κ, ξ)

∣∣∣∣det

(
dx

dy

)∣∣∣∣−1

For example, if we choose π0 to be Gaussian distribution according to N (κ, ξ2), then

log π(x;κ, ξ) = − log ξ − 1

2
log(2π)− 1

2

(
logit(x)− κ

ξ

)2

− log(x (1− x)). (17)

Here, the logit function, logit(x) = log x − log(1− x), is the inverse of the sigmoid function
f(x) = 1/(1 + exp(−x)).

Thus, the derivative with respect to the parameters (i.e., κ and ξ) can be computed analytically,
and reads

∂ log π(x;κ, ξ)

∂κ
=

logit(x)− κ
ξ2

, (18)

∂ log π(x;κ, ξ)

∂ξ
= −1

ξ
+

1

ξ

(
logit(x)− κ

ξ

)2

. (19)

We use this log probability in the policy gradient formula to speed up training.

C.2. Beta Distribution

The probability density function of the beta distribution is defined as:

π(x;κ, ξ) =
Γ(κ+ ξ)

Γ(κ)Γ(ξ)
xκ−1(1− x)ξ−1,
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where the Gamma function is Γ(z) =
∫∞

0 xz−1e−tdt. Here, the κ and ξ are the parameters of the
beta distribution, which can be learned by the autoregressive policy network. The corresponding
log-probability takes the form

log π(x;κ, ξ) = log Γ(κ+ ξ)− log Γ(κ)− log Γ(ξ) + (κ− 1) log(x) + (ξ − 1) log(1− x). (20)

Thus, the derivative with respect to the parameters (i.e., κ and ξ) reads

∂ log π(x;κ, ξ)

∂κ
= ψ(κ+ ξ)− ψ(κ) + log(x), (21)

∂ log π(x;κ, ξ)

∂ξ
= ψ(κ+ ξ)− ψ(ξ) + log(1−x), (22)

where the digamma function is defined as the logarithmic derivative of the Gamma function:

ψ(x) =
d

dx
ln
(
Γ(x)

)
=

Γ′(x)

Γ(x)
. (23)

This expression for the gradient can be used to compute the policy gradient for faster training.
In the Sec. 3.3, we mainly talk about the sigmoid-Gaussian distribution. Nevertheless, switch-

ing to the beta distribution only requires several simple modifications. As to Eqn. 10, we instead
parametrize zκj = exp

(
V κ
j y≤j + cκj

)
+ 1, zξj = exp

(
V ξ
j y≤j + cξj

)
+ 1, where Beta distribution

has parameters bigger than one, and thus is concave and unimodal (Chou et al., 2017). Then, for
example, we can sample the first duration ac

1 ∼ π(ac
1|ad

1)=B
(
zκ1 [ad

1 ], zξ1[ad
1 ]
)

.
Another good feature of the beta distribution is an analytic formula for entropy Sc(B(α, β)) =

ln B(α, β)− (α− 1)ψ(α)− (β − 1)ψ(β) + (α+ β − 2)ψ(α+ β). Thus, we adopt this formula as
an entropy regularization in the optimization.

Appendix D. Choosing the protocol duration T

In this appendix, we explain the choice of protocol duration JT = 10 used in our study.
Figure 6 shows a scan of the best energy over the protocol duration T in the noise-free case for
N = 4 qubits using the three methods: QAOA, CD-QAOA and adiabatic driving. For the adiabatic
driving, we consider the driven spin-1/2 Ising model:

H(λ)=λ(t)H+(1− λ(t))H̃, (24)

where λ(t)=sin2
(
πt
2T

)
, t ∈ [0, T ], is a smooth protocol satisfying the boundary conditions: λ(0)=

0, λ(T ) = 1, λ̇(0) = 0 = λ̇(T ). The initial state is the ground state at t= 0, i.e. |ψi〉= |↑ · · · ↑〉,
while the target state is the ground state of the Ising model at t = T for hz/J = 0.4523 and
hx/J = 0.4045. Here, H is the target Hamiltonian defined in Eq. (3), and H̃ = −∑N

i=1 S
z
i .

The value JT = 10 is selected to achieve a compromise: on the one hand, it is large enough
for CD-QAOA to reach close enough to the ground state; on the other hand, it is small enough
for a discrepancy between the performance of CD-QAOA and QAOA to become clearly visible.
Hence, JT = 10 exemplifies nicely the benefits of using the generalized QAOA ansatz, compared
to QAOA. Last, we emphasize that JT = 10 is far away from the adiabatic regime, as shown by the
adiabatic curve.
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Figure 6: Spin-1/2 Ising model: energy minimization at different protocol duration T for three different
methods in the nose-free setup: CD-QAOA (blue line), QAOA (red line), adiabatic evolution
(green line). The physics model and the setting are the same as in Sec. 4.1. For the adiabatic
driving simulation, we used the protocol function λ(t) = sin2

(
πt
2T

)
, t ∈ [0, T ]. The quantum

dynamics was solved for numerically, using a step size of ∆t = 1× 10−3. The system size is
N=4. The vertical purple dashed line corresponds to JT =10.

Appendix E. Implementing Constrained Protocol Durations

As mentioned in Section 2.3, there exist different methods to constrain the total protocol du-
ration of the PG-QAOA algorithm, and fix it to the value T . We implemented and compared three
different methods in the investigation:

1. The first is the normalization method described in Section 2.3 that normalizes the sum of the
durations;

2. The second method is the truncation method by adjusting the tail values of the protocol to
ensure that the total duration matches the protocol duration constraint T , i.e. appending the
last protocol duration with the difference when below the constraint, or trimming the protocol
duration sharply before it exceeds the constraint;

3. The last method is a penalty method by adding extra negative penalty to the reward when the
total protocol duration tops the constraint T .

Method 3 incentivizes the RL agent to stay inside the protocol duration constraint by penalizing
any violation. If the protocol duration exceeds the constraint, the reward drops, thereby encouraging
the agent to stay away from this region. Nevertheless, there is no guarantee that the protocol duration
exactly matches the total duration.
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Method 3 also involves the design of the negative penalty function, and so we compared three
different shapes [Eq. (25)]: exponential, linear, and constant. The extra formulas for the different
penalty reward functions which we used in the investigations are shown below.

qexp(ac, T ) = exp

(∑
i

ac
i − T

)
− 1.1

qlinear(a
c, T ) = −3

(∑
i

ac
i − T

)
− 0.1

qconst(a
c, T ) = −1

(25)

Figure 7 details the comparison of the three different methods (five different values are shown
since there are three separate implementations for the last method). We can see that while the
truncation method is comparable to the normalization method in the JT =10 case, the normalization
method significantly outperforms all other methods in the JT =28 case across all noise values and
sources. For this reason, we chose to proceed with the normalization method in benchmark of
different algorithms. That said, we provide no formal proof that the normalization method is the
optimal way to implement the total duration constraint, and it is conceivable that yet more efficient
methods exists.

Appendix F. Local Minima in the Discrete Optimization Landscape

Our aim in this section is to obtain some preliminary understanding of the control landscape,
and in particular to investigate how smooth/rugged it is. For simplicity, instead of the joint continuous-
discrete optimization problem, we consider two independent optimization landscapes, correspond-
ing to the continuous and discrete problems independently. This is sufficient, since we provide
numerical evidence that the discrete optimization landscape already contains a large number of
unique local minima, which makes searching for the optimal protocol sequence a formidable chal-
lenge. The continuous landscape was investigated in Ref. (Yao et al., 2020b), so we focus on the
discrete case here.

In order to investigate the topography of the discrete optimization landscape, we use the
Stochastic Descent (SD) method, cf. Ref. (Bukov, 2018). SD starts with a random initialization
of the discrete protocol sequence. At each SD step, we sample a random position in the protocol
(i.e., time step) and randomly perturb the discrete action (i.e. Hamiltonian gate) at that position.
Then we use an optimization solver to find the durations of the continuous actions, which ultimately
allows us to compute the reward associated with a given protocol sequence. If the resulting protocol
sequence can achieve a lower energy, we accept the new protocol; otherwise, we keep the previous
protocol and repeat the same process to generate another protocol. We stop the procedure once it is
no longer possible to find a change in the discrete actions that yields a lower-energy protocol; the
resulting protocol sequence then corresponds to a local (one-flip) landscape minimum. Repeating
the SD procedure a number of times starting from a different random initial protocol sequence pro-
vides us with an empirical sample of the topography of local minima in the discrete optimization
landscape.

In Fig. 8, we start with 2000 randomly initialized protocol sequences of length JT = 10, and
visualize the local minima that SD gets stuck into. In the absence of noise, we find a total of 80%
unique discrete protocol sequences that coincide with local minima in the landscape. On the other
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hand, the landscape becomes visibly more rugged in the presence of noise, which is the main focus
of this paper. The percentage of unique local minima protocols in the noisy settings is at least 98%.
The sets of local minima in the three different noise types also have interesting characteristics:
compared to those with the classical measurement noise and the gate noise, the energy distribution
of the quantum measurement noise spreads out further in the higher energy regime. Hence, the
quantum measurement noise control problem appears to possess the most difficult landscape among
the three kinds of noises from the perspective of SD.

Notice that the RL agent considered in the main text consistently finds low-energy protocol se-
quences in the presence of noise [Fig. 3]. Hence, we conclude that, during training, the agent learns
to escape the many lower-energy local minima in the landscape. However, there is no guarantee that
the agent finds the global minimum (given the learning rate attenuation schedule most likely it does
not).
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Figure 7: Spin-1/2 Ising chain: Comparison among different normalizing methods for the protocol dura-
tions in the PG-QAOA algorithm. The blue bar is the normalization mentioned in Sec. 2.3; the
orange one is truncating the duration up to T by modifying the last protocol duration or trim-
ming the protocol to match the total duration; the last three correspond to three different penalty
functions in Eqn. 25. The experiment setups are energy minimization in the Ising model against
different noise levels (odd rows display measurement noise (including quantum), and even rows
show gate noise) with circuit depths p= q/2 = 4, different system sizes N = 4, 6, 8 and protocol
duration JT = 10 (first two rows) and JT = 28 (last two rows). The initial and target states are
|ψi〉= |↑ · · · ↑〉 and |ψ∗〉= |ψGS(H)〉 for hz/J = 0.4523 and hx/J = 0.4045. The alternating
unitaries for PG-QAOA are generated by Ad = {H1, H2}.
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(c) δ[EGS]=0.4 (N=8)
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Figure 8: Spin-1/2 Ising chain: The discrete optimization landscape visualization for the discrete protocol
sequences using the stochastic descent for energy minimization against different noise levels:
a) noise free setting, b) classical measurement noise, c) gate noise, d) Quantum measurement
noise. The green trajectories corresponds to the path for each realization; the black dot is each
ending point. The ratio of the different protocol is shown in the red in the lower right corner.
The right panel shows the density histogram of the final protocol’s energy ratio for the 2000
random realizations. The Ising model’s system size is N = 8 with circuit depths p = q/2 = 4
and protocol duration JT = 10. The initial and target states are |ψi〉 = | ↑ · · · ↑〉 and |ψ∗〉 =
|ψGS(H)〉 for hz/J = 0.4523 and hx/J = 0.4045. The discrete protocol pool is of size 5:
Ad = {H1, H2;Y,X|Y, Y |Z}.
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