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Abstract
Deep neural networks, when optimized with sufficient data, provide accurate representations of
high-dimensional functions; in contrast, function approximation techniques that have predominated
in scientific computing do not scale well with dimensionality. As a result, many high-dimensional
sampling and approximation problems once thought intractable are being revisited through the lens
of machine learning. While the promise of unparalleled accuracy may suggest a renaissance for
applications that require parameterizing representations of complex systems, in many applications
gathering sufficient data to develop such a representation remains a significant challenge. Here we
introduce an approach that combines rare events sampling techniques with neural network train-
ing to optimize objective functions that are dominated by rare events. We show that importance
sampling reduces the asymptotic variance of the solution to a learning problem, suggesting benefits
for generalization. We study our algorithm in the context of solving high-dimensional PDEs that
admit a variational formulation, a problem with applications in statistical physics and implications
in machine learning theory. Our numerical experiments demonstrate that we can successfully learn
even with the compounding difficulties of high-dimension and rare data.
Keywords: Partial Differential Equations; Importance Sampling; Rare Events; Backward Kol-
mogorov Equation; Variational Monte Carlo

1. Introduction

Deep neural networks (DNNs) have become an essential tool for a diverse set of problems in data
science and, increasingly, the physical sciences Carleo et al. (2019). The uncommonly robust ap-
proximation properties of DNNs undergird the successes of deep learning in seemingly disparate
problems LeCun et al. (2015). The power of approaches based on deep learning is evident in high-
dimensional settings where most classical tools from numerical analysis break down, due to the
curse of dimensionality Donoho and Johnstone (1989). Many compelling questions in statistical
physics require precise knowledge of high-dimensional functions, objects which can be challenging
to represent and compute, suggesting that machine learning may have a transformative role to play.

Of course, challenges arise when using machine learning techniques in the physical sciences that
do not appear in conventional settings. Unlike in computer vision and natural language processing,
curated data sets are not typically available for physical problems that we intend to solve de novo.
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As a result, we must generate the data either experimentally or computationally that we use to train
our models.

Of particular interest in this context are problems involving high-dimensional partial differen-
tial equations (PDE) that can be formulated as variational minimization problems. Many PDEs of
interest in statistical mechanics and quantum mechanics admit such a variational principle, and they
lend themselves naturally to solution by machine learning techniques since the objective function
can serve as a loss to train a neural network used to represent the solution. How to generate data
to evaluate this objective constitutes, perhaps, the core challenge in problems of this type because
the data that dominates the objective may be rare if sampled naively. In this work, we address this
sampling problem.

Neural networks for variational PDEs. Consider a PDE whose solution can be found via the
minimization problem

min
f∈F
I(f) (1)

Here
I(f) =

∫
Ω
L(x, f)dν(x), (2)

where Ω ⊂ Rd, ν is some positive measure, and L(x, f) is some Lagrangian depending on x as
well as f and its derivatives: Typical examples are

L(x, f) = 1
2 |∇f(x)|2 + V (x)|f(x)|2, dν(x) = dx, (3)

where V : Ω→ R is some potential, which gives the time-independent Schrödinger equation if we
impose

∫
Ω |f(x)|2dx = 1, or

L(x, f) = 1
2 |∇f(x)|2, dν(x) = e−βV (x)dx (β > 0) (4)

which gives the time-independent backward Kolomogorov equation if we impose some boundary
conditions.

Variational Monte Carlo (VMC) procedures Toulouse et al. (2016) have been used to compute
solutions to PDEs that admit this formulation. In this context, solutions are often computed using
the Ritz method, which essentially amounts to optimizing the weights of specified, hand-chosen
basis elements. Methods based on neural networks Eigel et al. (2019); E and Yu (2017) offer an
alternative to VMC which may need less a priori information about the solution by relying on the
approximation power of these networks.

Data acquisition and importance sampling. Training a neural network to represent the solution
of the PDE by minimizing (1) requires estimating the integral (2). Because there is no data set given
beforehand, the most straightforward implementation samples data points on Ω from the measure ν
properly normalized. While natural, this approach is by no means optimal and it could even fail if the
expectation of L(x, f) is dominated by events that are rare on ν: a simple example illustrating this
point is shown in Fig. 1. If Ω is high dimensional, the variance of a simple estimator using unbiased
samples from ν will typically be large compared to its mean squared, and some form of importance
sampling will therefore be required. If we were interested in estimating the loss I(f), it is well-
known that the optimal way to draw samples would be to use the reweighted measure dν̃(x) =
I−1(f)|L(x, f)|dν(x) and reweight the samples consistently using I(f)|L(x, f)|−1 Awad et al.
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Figure 1: Simple illustrative example where the objective I(q) =
∫ x2
x1
|q′(x)|2e−βV (x)dx, with

V (x) = (1 − x2)2 + x/10, β = 8, and x1, x2 at the minima of V (x), is minimized
over sigmoid functions with two parameters a and b, controlling respectively their loca-
tion and width – in this example, functions of this type do a good job at capturing the
minimizer if a and b are properly are adjusted. Top left panel: the minimizers of the pop-
ulation and the empirical losses are compared to the actual solution; top right panel: the
histogram of the data acquired by drawing 104 independent samples (shown as circles)
from the Gibbs distribution restricted on x ∈ [x1, x2] is compared to the exact density;
bottom panels: the population loss (left) is compared to the empirical loss (right) esti-
mated on the data. Because the data is somewhat sparse near the maximum of V (x)
that dominates the objective, the empirical loss does a bad job at capturing the features
of the population loss – note in particular the different scale and the added ruggedness
in the empirical loss. As a result, the function optimized over this empirical loss differs
significantly from the minimizer of the population loss that approximates the exact solu-
tion well, leading to a large generalization error. Note that here we sampled the measure
and identified the minimizers by brute-force: in more complicated situations there is the
added difficulty of performing this sampling, and minimizing the empirical loss by SGD.
For more details on this example, see Appendix A
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(2013). The difficulties with this approach are that the reweighted measure ν̃ may not be easy to
sample, and the reweighting factor involves the unknown value I(f).

We show below that an importance sampling strategy can, however, be applied to reduce the
variance of the estimator for the loss (as our training procedure relies on data generated at every
training step) associated with variational problems of the type (1). We carry this out using umbrella
sampling combined with replica exchange. These methods are widely used in applications from
statistical mechanics because they offer a remedy to the problem of an objective dominated by
rare data, but they are often rendered intractable becuase their practical design requires precise
knowledge about where and how to sample. In our context, however, we can use the current estimate
of the solution to inform and enhance the sampling in regions of the domain that contribute to the
objective. The efficiency of such active learning approaches will be demonstrated below.

Reactive events and committor. As a specific application of practical interest that illustrates the
general issues outlined above, we will focus on optimizing an objective of type (4) for a target func-
tion known as the “committor function,” or committor in short. The committor is useful to identify
reaction pathways and sample reactive trajectories in problems displaying metastability, a central
question in statistical mechanics with decades of work behind it. In this context, the committor de-
scribes the probability that a configuration will “react”, by transiting from one metastable basin to
another under the stochastic dynamics of the system under consideration. Parameterizing the com-
mittor accurately (as many functions related to rare transitions in applications in condensed matter
physics) requires samples from configurations that are rare under the Boltzmann distribution, a fact
emphasized by the ubiquity of importance sampling methods for free energy calculations. With this
in mind, calculating the committor epitomizes why a naive sampling strategy will not succeed in
general and importance sampling is necessary.

Related works. Importance sampling and other variance reduction techniques have appeared in
a variety of contexts in machine learning. Csiba and Richtarik (2018) described and analyzed an
algorithm that does importance sampling of the training set to adaptively select minibatches and
accelerate gradient descent. Their work formalizes an approach, represented in a large body of work
Nesterov (2012); Roux et al. (2012); Johnson and Zhang (2013), that aims to reduce the variance in
the gradients when optimizing using stochastic gradient descent. In a separate line of inquiry, Fan
et al. (2010) uses importance sampling to perform approximate Bayesian inference in continuous
time Bayesian networks. Our setting differs substantially from these works, as we are principally
concerned with problems in which the data set is sampled on-the-fly from a Boltzmann distribution.
Furthermore, we require importance sampling for the learning to be tractable at all, whereas the
aforementioned works seek to accelerate optimization in otherwise tractable learning problems.
Our theoretical results suggest that these previously studied approaches benefit generalization.

Our work parallels a line of inquiry in the Quantum Monte Carlo literature which has demon-
strated the utility of neural network ansatze for electronic structure problems Han et al. (2019);
Hermann et al. (2020); Pfau et al. (2020). Though the physical setting is quite different from the
one we consider here, these works also rely on a strategy in which the data is collected online and
there is feedback between training and data collection. Regarding the application to metastability,
transition path sampling methods are perhaps the most closely related to our approach Bolhuis et al.
(2002); Maragliano et al. (2006); E et al. (2005). Our applications are heavily influenced by the
perspective of potential theory Bovier et al. (2002) and transition path theory E and Vanden-Eijnden
(2006, 2010), which use the notion of the committor function (discussed in detail below) to charac-
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terize metastability. Khoo et al. (2018) first considered the problem of learning committor functions
from the perspective of solving high-dimensional PDEs but did not address the sampling issues that
can arise in computing the objective. Our approach most closely follows that of Li et al. (2019),
who also examined the problem of optimizing a representation of the committor using neural net-
works on low-dimensional landscapes. Our work extends this approach in several important ways:
first, our algorithm uses an active approach—the importance sampling directly uses the commit-
tor function meaning that there is feedback between the optimization and the data collection. In
high-dimensional systems in which selecting a reaction coordinate presents a challenging design
problem, our approach is crucial for effective sampling because we avoid explicitly constructing a
reaction coordinate.

Main contributions. First, under very general assumptions, we show that importance sampling
asymptotically improves the generalization error. Next, we describe an algorithm for active im-
portance sampling that enables variance reduction for the estimator of the loss function, even in
high-dimensional settings. Finally, we demonstrate numerically that this algorithm performs well
both on low and high-dimensional examples and that, even when the total amount of data is fixed,
optimizing the variational objective fails when importance sampling is not used.

2. Online learning and generalization error

Suppose we parametrize the function f entering the objective function in (1) using a neural network,
i.e. we set f(x) = f(x,θ), where f(·,θ) is the network output and θ ∈ RN collectively denotes all
the parameters entering this network. This turns (1) into an objective function for the parameters θ:

L(θ) = I(f(·,θ)) =

∫
Ω
`(x,θ)dν(x) (5)

where
`(x,θ) = L(x, f(·,θ)) (6)

In the jargon of machine learning, L(θ) is called the population loss or risk, and in practice, it must
be estimated using an empirical estimate. The simplest choice for the empirical loss is

Ln(θ) =
1

n

n∑
i=1

`(xi,θ) (7)

where {xi}ni=1 are iid drawn from ν (assuming this positive measure is normalized). This offers the
possibility to optimize the parameters θ by gradient descent (GD), i.e. using

θk+1 = θk − α∇θLn(θk), k = 0, 1, 2, . . . (8)

where θk denote the successive updates of the parameters starting from some initial θ0 and α > 0
is some time step (learning rate). In situations in which no data set is available beforehand, it is
customary to use online learning, i.e. to generate new independent batches of data {xi}ni=1 after
each (or a few) step(s) of the GD update. In (8): each {xi}ni=1 is called a minibatch, and the update
in (8) is the widely used stochastic gradient descent (SGD) algorithm.

In this setup, the main issue becomes how to assess the quality of an approximation of the min-
imizer(s) of the population risk that we obtain using SGD. To phrase this question more precisely,

5



ACTIVE IMPORTANCE SAMPLING

let us denote by {θ̄k}k∈N0 the successive update of the parameters by GD over the population risk,
i.e.

θ̄
k+1

= θ̄
k − α∇θL(θ̄

k
), k = 0, 1, 2, . . . (9)

Let us assume that: Given some initial value θ̄0, the GD update in (9) converges towards a local
minimizer of the population risk, θ∗ = limk→∞ θ̄

k, satisfying

∇θL(θ∗) = 0, H∗ = ∇θ∇θL(θ∗) is positive-definite (10)

Note that this assumption does not specify how good the local minimizer θ∗ is (i.e. how close
L(θ∗) is from minθ L(θ)) but it requires that L(θ) be strictly convex in the vicinity of θ∗. Sim-
ilar assumptions have been used to study SGD as variational inference Mandt et al. (2017). This
assumption implies:

Proposition 1 The sequence {θk}k∈N0 obtained using the SGD update in (8) starting from θ0 =

θ̄
0 and using an independent batch of data {xi}ni=1 drawn from ν at every step is such that

lim
k→∞

lim
n→∞

nED[L(θk)− L(θ∗)] = 1
2α tr[C∗H∗] (11)

Here ED denotes expectation over all the batches used to compute the sequence θk, and C∗ is the
N ×N tensor that solves

H∗C∗ + C∗H∗ − αC∗H∗C∗ = B∗ (12)

where B∗ is the covariance of∇θ`(x,θ∗) (using ∇L(θ∗) = 0)

B∗ =

∫
Ω
∇θ`(x,θ∗)[∇θ`(x,θ∗)]Tdν(x) (13)

The proof of this proposition is given in Appendix B. Essentially, it amounts to linearizing the
sequence {θk}k∈N0 from SGD around {θ̄k}k∈N0 from GD: the resulting sequence is the discretized
version of an Ornstein-Ulhenbeck process that can be analyzed exactly.

Even though the statement in (11) is only asymptotic in n and k, it suggests that for large k and
large n, we will have

EDL(θk) = L(θ∗) + 1
2n
−1α tr[C∗H∗] + higher order corrections in n (14)

Therefore, if we can guarantee that θ∗ is a good local minimizer of the loss (which has to do with
the choice of network architecture and how well-tailored it is to the problem at hand, the choice of
the initial θ̄0, etc.), (11) indicates that the error made by learning using SGD rather than GD can be
controlled by: (i) increasing the size n of the batches, (ii) decreasing the learning rate α, or (iii) re-
ducing tr[C∗H∗]. The first two observations are standard and are at the core of the Robbins-Monro
stochastic approximation procedure Robbins and Monro (1951). The third observation is also not
surprising from the proof of Proposition 1 which shows that n−1αC∗ is asymptotic covariance of
the update θk from the SGD sequence around its mean θ̄k.

Interestingly, reducing tr[C∗H∗] essentially amounts to reducing trB∗ withB∗ defined in (13).
Indeed, to leading order in α, we see from (12) that

tr[C∗H∗] = 1
2 trB∗ +O(α) (15)

Reducing trB∗ is precisely what we show how to do next using importance sampling.
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Figure 2: Simple illustrative experiment; the potential energy function is a 2D mixture of Gaus-
sians and the committor is represented as a single hidden layer neural network. Top
(results using our active importance sampling algorithm): Filled contours illustrate the
Müller-Brown potential (38) with the isocommittor lines are shown from white to black.
Notably, level set q = 0.5 coincides with the saddle, as expected. Right: We verify that
this solution is consistent with the expected committor function by sampling 100 con-
figurations for each window 0.1, 0.2, . . . and running Langevin trajectories to compute
estimate the committor probability. The fraction of trajectories reaching B before A is
close to the expected value. Bottom: Without importance sampling, the optimization con-
verges to a representation of the committor q with poor performance. Left: The contours
of the committor fail to localize to the transition region. Right: The committor analysis
shows that without importance sampling, the results deviate strongly from the expected
probabilities.
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3. Active learning with umbrella sampling and replica exchange

To reduce the variance of the estimator for L, we will use an importance sampling strategy that
combines umbrella sampling Torrie and Valleau (1977) (cf. stratification Dinner et al. (2020)) with
replica exchange Swendsen and Wang (1986); Fukunishi et al. (2002). The first method uses win-
dowing functions to enhance the sampling in otherwise rarely sampled regions of the data distribu-
tion; the second allows for exchange between these windows to accelerate sampling even further.
Both these methods are widely used: the novelty lies in the way we actively define the windowing
functions using the current estimate of the target function f by its network representation f(·,θ). In
Appendix C we discuss an active importance sampling scheme based on direct reweighting which
could be used to reduce the variance in the estimate of the gradient of the loss.

3.1. Umbrella sampling

Let us denote these windowing functions as a set of non-negative functions Wl(x) ≥ 0 with l =
1, . . . , L such that

∀x ∈ Ω :

L∑
l=1

Wl(x) = 1, (16)

Given any test function φ : Ω→ R, we can write

Eνφ =
L∑
l=1

∫
Rd

φ(x)Wl(x)dν(x) ≡
L∑
l=1

wl Elφ (17)

where we defined the expectation

Elφ = Z−1
l

∫
Rd

φ(x)Wl(x)dν(x) where Zl =

∫
Rd

Wl(x)dν(x) (18)

as well as the weights
wl = EνWl. (19)

By choosing φ(x) = Wl′(x) in this expression, we deduce that the weights satisfy the eigenvalue
problem Thiede et al. (2016)

wl′ =

L∑
l=1

wlpll′ , l′ = 1, . . . , L, subject to
L∑
l=1

wl = 1, (20)

where we defined
pll′ = 〈Wl′〉l (21)

In practice, we can sample Z−1
l Wl(x)dν(x) by Metropolis-Hastings Monte-Carlo on a potential

biased by − logWl(x) and compute expectations in this ensemble as

Elφ ≈
1

n

n∑
i=1

φ(xi,l), xi,l ∼ Z−1
l Wl(x)dν(x) (22)

This allows us to estimate Elφ in (20) as well as pll′ in (21): knowledge of the latter quantity enables
us to solve the eigenvalue problem in (20) to find the weights wl, and finally estimate Eνφ via (17).
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3.2. Replica Exchange

The sampling can be accelerated by using replica exchange between the ensembles in the different
windows, which alleviates potential problems due to metastability within these windows. This
amounts to constructing a stochastic process on the extended phase space ΩL×PL, where PL is the
permutation group of the L replica, such that its joint equilibrium measure on this extended space
is given by

dνσ(dx1, . . . , dxL) =
1

L!

L∏
l=1

Z−1
l Wσ(l)(xl)dν(xl) (23)

where σ ∈ PL denotes a permutation of the indices {1, 2, . . . , L} and σ(l) is the index on which l is
mapped by this permutation. A process in detailed-balance with respect to νσ can be implemented
e.g. in the form of a stochastic switching process Lu and Vanden-Eijnden (2019). In practice,
we sample the measures Z−1

l Wl(x)dν(x) independently in each windows for intervals of duration
tswap, then attempt to exchange configurations in two windows l and m 6= l uniformly picked in
{1, . . . , L} and {1, . . . , L} \ {l} respectively, and accept this move with a Metropolis acceptance
probability consistent with (23). Assuming that dν(x) = Z−1 exp(−V (x))dx where V : Ω → R
is some potential and Z =

∫
Ω exp(−V (x))dx, and denoting Vl(x) = V (x) − logWl(x), this

acceptance probability reads

acc(xl,xm) = min
[
1, exp

(
− Vl(xm)− Vm(xl) + Vl(xl) + Vm(xm)

)]
. (24)

3.3. Adaptive choice of the windows

As of yet, we have not specified the windowing functions Wl(x). Because the Wl(x) determine
where the samples concentrate a “good” choice of these functions is crucial for the success of the
sampling scheme. Here we propose to make this choice adaptive to the function f(x,θ) that is
being optimized, by dividing space into regions where f(x,θ) takes specific values. To this end, let

σ(u) =
1

1 + e−u
(25)

and given u0 < u1 < u2 < · · · < uL and some k > 0, define

Wl(x) = σ (k(f(x,θ)− ul−1))− σ (k(f(x,θ)− ul)) , l = 1, . . . , L (26)

In the applications considered below f is a probability and hence its range is restricted to [0, 1]. As
a result we have

∀x ∈ Ω :
L∑
l=1

Wl(x) = σ (k(f(x,θ)− u0))− σ (k(f(x,θ)− uL))

≥ σ(−ku0)− σ(k(1− uL))

(27)

That is if we take k large enough and pick u0 = −a and uL = 1 + a with a > 0 such that ka� 1,
the non-negative functions Wl(x) can be made to satisfy (16) to arbitrary precision exponentially
fast in ak. The functions Wl(x) are also peaked around f(x, θ) = 1

2(ul + ul−1) which means that
by taking enough values of ul between u0 = −a and uL = 1 + a we can cover all the range of

9
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Algorithm 1: Importance Sampled Variational Stochastic Gradient Descent.
Data: Lagrangian `(x,θ) = L(x, f(·,θ)), initial θ, n ∈ N, L ∈ N, α > 0, k > 0,

u0 < . . . < uL.
while∇θLn(θ) > εtol do

for l = 1, . . . , L do
for i = 1, . . . , n do

Sample xi,l ∼ Z−1
l Wl(x)dν(x);

Propose replica swaps;
end
Compute

pl,l′ =
1

n

n∑
i=1

Wl′(xi,l) for l′ = 1, . . . , L, and

Gl[θ] =
1

n

n∑
i=1

∇θ`(xi,l,θ)

end
Solve (20) for wl, l = 1, . . . , L;
Compute

∇θLn(θ) =
1

L

L∑
l=1

Gl(θ)wl

Update θ ← θ − α∇θLn(θ);
end
Result: θ

possible values for f(x,θ). The ul can be spaced linearly, or, to concentrate sampling near the
rapidly varying part of the committor function can be spaced geometrically away from ul = 1/2.

An explicit scheme putting these steps together with SGD is described in Algorithm 1, where
we provide a description of the most straightforward implementation of our approach. Algorithm 1
is sequential; a version in which we evolve xi,l and θ concurrently would allow for significant
wallclock speed-ups.

4. Application: High-dimensional Backward Kolmogorov Equations (BKE)

Within the framework of statistical mechanics, the evolution of complex physical systems can be de-
scribed by probability distributions and expectations that solve partial differential equations like the
Fokker-Planck equation or the backward Kolmogorov equation (BKE). Because systems of prac-
tical interest are often high-dimensional, these PDEs are typically not solved directly—rather we
resort to Monte-Carlo sampling methods or molecular dynamics simulations to estimate the system
distribution. Our aim here is to investigate whether we can bypass these sampling methods, and go
back to solving the relevant PDEs, using tools from ML.
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4.1. The metastability problem

We will focus on one specific problem often encountered in practice: how to analyze the dynamics
of systems displaying metastability—i.e. evolution that occurs on a wide range of very different
time-scales. Consider in particular a physical system with coordinatesXt ∈ Rd whose evolution is
governed by the Langevin equation

dXt = −∇V (Xt)dt+
√

2β−1dW t. (28)

Here V : Rd → [0,∞) is a potential energy function, β > 0, which controls the magnitude of
the fluctuations, is typically interpreted as the inverse temperature in physical systems, and W t

is a Wiener process. This dynamics, or its variant with momentum included, is ubiquitously used
to model molecular dynamics in the condensed phase but has also been proposed as a heuristic
model for stochastic optimization methods like SGD Yaida (2018) and sampling-based optimization
schemes Ma et al. (2019).

In the context of a system with a dynamics governed by (28), metastability arises when the sys-
tem remains confined in some region of its phase space for very long periods of time and seldom
makes a transition to another such region. In general, it is not possible to directly observe the tran-
sitions between these metastable states using trajectories generated by (28) because the state space
is very high dimensional in nontrivial cases and these transitions are by definition very infrequent.

Solving a high-dimensional PDE offers an alternative, in principle. Indeed metastability can be
characterized mathematically as the property that the spectrum of the infinitesimal generator asso-
ciated with (28) has a “spectral gap” between a set of low-lying eigenvalues with small magnitude
compared to the rest of them—these low lying eigenvalues specify the rates of transition between
metastable states, while the associated eigenfunctions describe their mechanism Bovier et al. (2002);
Gaveau and Schulman (1998). The eigenvalue/eigenfunction pairs solve the minimization problem

λk = min
ϕ
Z−1

∫
Rd

|∇ϕk(x)|2e−βV (x)dx, k ∈ N0 (29)

where Z =
∫
Rd e

−βV (x)dx and successive eigenfunctions are obtained by requiring that they be
orthonormal to the previous ones: starting from ϕ0 = 1 with λ0 = 0, for k ∈ N, we impose

Z−1

∫
Rd

ϕk(x)ϕk′(x)e−βV (x)dx = δk,k′ for k′ = 0, . . . , k (30)

This gives 0 = λ0 < λ1 < · · · .
While the minimization problem in (29) fits the framework of (1), in complex systems there may

be hundreds or thousands of metastable states, and only a few of them are actually relevant Cameron
and Vanden-Eijnden (2014). In this context, it is preferable to focus on one transition of interest at
a time. This can be achieved using the potential theoretic framework to metastability Bovier et al.
(2002); Bovier (2006) or transition path theory (TPT) E and Vanden-Eijnden (2006, 2010), and this
is the approach we will focus on next.

4.2. Potential approach via BKE

Suppose we want to quantify the average rate and mechanism by which the solution to the Langevin
equation (28) makes a transition from a state A ⊂ Rd to a distinct state B ⊂ Rd. This can be
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done by calculating the “committor function” q : Rd → [0, 1], which gives the probability that a
trajectory starting at x first reaches B before A:

q(x) := Px(tB < tA) (31)

where tA = inf{t : x(t) ∈ A} and similarly for tB . Under the dynamics (28), the committor q(x)
solves the backward Kolmogorov equation

(Lq)(x) = 0 for x 6∈ A ∪B
q(x) = 0 for x ∈ A
q(x) = 1 for x ∈ B.

(32)

where −L is the infinitesimal generator of the process defined by (28):

Lq = ∇V · ∇q − β−1∆q. (33)

It can be shown that, with appropriate choice of A and B, q(x) can be asymptotically related to a
eigenfunction ϕk in the low-lying part of the spectrum as ϕk(x) = aq(x) + b for some appropriate
choice of a and b—we refer the interested reader to Bovier (2006) for details. Here we will focus on
using the active learning method we propose to solve the backward Kolmogorov equation in (32) in
high dimension, i.e. in a setup where we would not be able to solve it using classical numerical PDE
methods such as the finite element method. Specifically, our goal in the next sections is to define
a parametric representation of the committor function by a neural network and an objective func-
tion that enables us to optimize the parameters in this network via active learning with importance
sampling.

4.3. Variational loss functions for learning the committor

The committor satisfies a Ritz-type variational principle (3) that the can be employed directly as an
objective function: That is, the solution to the BKE (32) is the minimizer of

inf
q
C(q) subject to q = 0 in A and q = 1 in B (34)

where
C(q) =

∫
Rd

|∇q(x)|2dν(x) with dν(x) = Z−1e−βV (x)dx (35)

In the optimization procedure below, it is more tractable to penalize deviations from the boundary
conditions rather than impose them as constraints. Consequently, we add penalty terms in (35) to
ensure that the committor has the right values on A and B and the objective function we will use is

Cλ(q) =

∫
Rd

|∇q(x)|2dν(x) + λ

∫
A
|q(x)|2dν(x) + λ

∫
B
|1− q(x)|2dν(x) (36)

where λ > 0 is an adjustable parameter. This objective function is of the type in (2) with

L(x, q) = |∇q(x)|2 + λ|q(x)|21A(x) + λ|1− q(x)|21B(x) (37)

where 1A(x) and 1B(x) denote the indicator functions of sets A and B, respectively.

12
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As discussed above, it is natural to model the minimizer of this cost functional as a neural
network. Given some representation f(·,θ) with parameter set {θ}ni=1, the problem becomes to
minimize Cλ over this set. We discuss the specific architectures that we use in applications below,
but any neural network architecture is admissible within in this scheme, provided that it gives an
output in the range [0, 1], which is simple to achieve in practice by passing the output through a
sigmoidal function (Appendix D). Even this condition can be relaxed: We describe an alternative
formulation of the committor (cf. Lu and Vanden-Eijnden (2014)) in Appendix E which can be
solved with distinct boundary conditions. The scheme we have described here could be implemented
using symmetry functions or collective variables, which we leave for future work.

4.4. Numerical Experiments

4.4.1. MÜLLER-BROWN POTENTIAL

As a proof of concept, we optimize the committor function on the well-studied Müller-Brown po-
tential Müller and Brown (1979). We consider the dynamics (28) for a 2D system evolving in a
Gaussian mixture potential

VMB(x) =

4∑
k=1

Ak exp
(
−(x− νk)TΣ−1

k (x− νk)
)

(38)

with
A = (−200,−100,−170, 15)

ν =

(
1
0

)
,

(
0

0.5

)
,

(
−0.5
1.5

)
,

(
−1
1

)
Σ−1 =

(
1 0
0 10

)
,

(
1 0
0 10

)
,

(
6.5 −5.5
−5.5 6.5

)
,

(
0.7 0.3
0.3 0.7

) (39)

Our results, shown in Fig. 2, demonstrate the importance sampling is required to converge a robust
estimate of the committor.

While the contours of the committor provide a reasonable guide, a “committor analysis” gives
a more precise test of convergence. To carry this analysis out, we sampled 100 distinct initial con-
figurations from each window (where q = 0.1, 0.2, . . . ) and then ran unbiased Langevin dynamics
to compute min(t(A), t(B)). Histograms of this calculation show that active importance sampling
leads to trajectories that reach B before A with the expected probabilities. However, without im-
portance sampling estimate of q performs poorly.

We represent the committor as a single-hidden layer ReLU network with m = 100 units. The
output of the ReLU network is passed through a sigmoidal function to compress the range because
the committor represents a probability. To initialize the representation, we take a discretized linear
interpolation between the center of basins A and B and optimize the representation to match the
normalized distance along this path. At each optimization step, we collect 50 samples from each
of the 10 windows in q-space. We use this sample to estimate the gradient after reweighting, as
described above. We run the optimization for a total of 1000 optimization steps using 50 samples
per window per optimization step with a restraint of k = 100 in the windowing function.

To make a systematic comparison, we ran a control experiment in which we used a single
unbiased trajectory (that is, no importance sampling) to carry out the optimization. The total number
of samples from this trajectory (10000 optimization steps with 50 samples per step) was chosen to
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be equal to the total amount of data collected in our importance sampling optimization. As shown
in Fig. 2, this approach does not succeed.

4.4.2. ALLEN-CAHN-TYPE SYSTEM

Unlike standard approaches to computing the committor (e.g., finite elements), the algorithm out-
lined here also succeeds when the input space is high-dimensional. As a non-trivial test of robust-
ness, we will consider the following example building on a discretized version of the Allen-Cahn
equation in two-dimension. Let us start from

∂tρ = D∆ρ+ ρ− ρ3, ρ : [0,∞)× [0, 1]2 → R (40)

with the Dirichlet boundary conditions

ρ(t, z1, z2) = +1, for z1 = 0, 1, ρ(t, z1, z2) = −1, for z2 = 0, 1, (41)

The Allen-Cahn equation is the gradient flow in L2 over the energy functional

E(ρ) =

∫
[0,1]2

(
1
2D|∇ρ(z)|2 + 1

4(1− |ρ(z)|2)2
)
dz (42)

If we takeD small enough, this energy admits two minimizers, which are also the stable fixed points
of (40) that solve

D∆ρ+ ρ− ρ3 = 0 (43)

These fixed points are either mostly ρ = 1 in the domain, with boundary layer of size D−1/2 near
z2 = 0, 1, or mostly ρ = −1, with boundary layer of sizeD−1/2 near z1 = 0, 1. These two solutions
are depicted in Fig. 3.

To build the model that we will actually study, let us discretize (40) on a lattice with spacing
h = 1/(N − 1) and introduce

ρi,j = ρ(ih, jh), i, j = 1, . . . , N (44)

We also add some additive noise to the discretized equation to arrive at the Langevin equation

dρi,j =
(
ρi,j − ρ3

i,j +D(∆Nρ)i,j
)
dt+

√
2β−1h−1dWi,j (45)

Here Wi,j is set of independent Wiener processes, ∆N is the discrete Laplacian,

(∆Nρ)i,j = h−2 (ρi+1,j + ρi−1,j + ρi,j+1 + ρi,j−1 − 4ρi,j) , (46)

and the boundary conditions read

ρi,j = 1, for i = 0, N + 1, j = 1, . . . , N,

ρi,j = −1, for j = 0, N + 1, i = 1, . . . , N.
(47)

We also set ρ0,0 = ρ0,N+1 = ρN+1,0 = ρN+1,N+1 = 0.
If we take D and β−1 small enough, the Langevin equation (45) displays metastability: the

solution stays confined for long period of times in regions near the fixed points of the deterministic
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Figure 3: Top left and right: The two metastable solutions of (45) with Dirichlet boundary condi-
tions (ρ = 1 at the left and right boundaries, ρ = −1 at the top and bottom boundaries).
Top center: Decay of the loss of as a function of training step for 10 runs of the opti-
mization with random initial conditions. Bottom: A sample transition path obtained by
sampling the biased ensemble with (q = 0, . . . , 1). The path shows the characteristic
nucleation pathway for a transition between the two metastable states, with the expected
hourglass shape.

equation (obtained by setting β−1 = 0 in (45)) and only rarely make transition between these
regions. This can be confirmed by looking at the equilibrium distribution of (45):

dν(ρ) = Z−1e−βV (ρ)dρ (48)

where we denote ρ = (ρi,j)
N
i,j=1, Z =

∫
R2N−2 e

−βV (ρ)dρ and the potential V (ρ) is the discrete
equivalent to (42):

V (ρ) = h−2
N∑

i,j=1

(
1
2D|(∇Nρ)i,j |2 + 1

4(1− |ρi,j |2)2
)

(49)

where∇N is the discrete gradient so that

|(∇Nρ)i,j |2 = h−2 (ρi+1,j − ρi,j)2 + h−2 (ρi,j+1 − ρi,j)2 . (50)

For small β−1 the distribution (48) is nearly atomic on the two minimizers of V (ρ) shown in Fig. 3.,
and the question is how do rare transitions occur between these metastable state and at which average
rate. This question can be answered by solving the BKE for the committor associated with (45)

We solved this problem using the active learning method outlined before in a situation where
N = 12, i.e. the state space is 122 = 144 dimensional. We use a single hidden layer ReLU
network with m = 100 neurons which is passed through a sigmoidal function at the output layer to
ensure that the range of q is (0, 1). The network is initialized by linearly interpolating homogeneous
configurations in magnetization space, which provides no a priori information about the spatial
structure of the transition path. We carried out the optimization with 12 total windows, including
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the boundary windows, with a learning rate of 5 × 10−2 for 5000 steps with 25 sampling steps per
window.

As shown in Fig. 3, this shows the characteristic pathway for a transition between the two
metastable states, with the expected hourglass shape as transition state Kohn et al. (2007) that can
also be identified by the string method E et al. (2002, 2007) or the minimum action method in this
specific example E et al. (2004); Heymann and Vanden-Eijnden (2008). It should be noted that the
initial increase in the loss function arises due to an initial representation of the transition path that
is not consistent with the dynamics of the model and that once representative configurations are
sampled, the estimate of the loss improves.

5. Conclusion and Future Work

The approach we propose here enables optimization in contexts in which the loss function is domi-
nated by data that is exceedingly rare with respect to its equilibrium measure. While we have both
theoretical and numerical evidence that this approach is effective for high-dimensional problems
and improves generalization, further evidence from physics applications would bolster our current
findings. In particular, we must test our approach on more complicated systems, like those typically
arising in biophysics. In such systems, there may be multiple pathways connecting two metastable
states, a complication that we did not investigate thoroughly here.

In some sense, the promise of machine learning for solving committor equations can be con-
ceptualized by interpreting these problems as classification problems. In the examples we consider,
the primary task directly resembles binary classification in which the network is attempting to find a
dividing surface between classes in a high dimensional space. The isocommittor surface is defined
by the dynamical fate of points in this space and collecting data to adequately resolve the location
of the boundary is typically impossible without importance sampling.

While our algorithm and code can easily employ any neural network architecture, we used very
simple neural networks for the examples in this paper. Finding architectures that are well-adapted
to a given physical system remains an important challenge Kearnes et al. (2016). Additionally,
there are natural improvements to the implementation of our algorithm: adaptive windowing, more
sophisticated reweighting schemes, and exploiting the “embarrassingly parallel” structure of the
computation to obtain computational speed-ups.

The class of PDEs that we consider here could be generalized to include Ritz-type objectives
with forcing terms, as well. Problems that are driven away from the equilibrium Gibbs distribution
pose significant challenges for existing sampling techniques and represent an important target for
future work.

References
Hernan P. Awad, Peter W. Glynn, and Reuven Y. Rubinstein. Zero-Variance Importance Sampling Estimators

for Markov Process Expectations. Mathematics of Operations Research, 38(2):358–388, May 2013. ISSN
0364-765X, 1526-5471. doi: 10.1287/moor.1120.0569.

Peter G Bolhuis, David Chandler, Christoph Dellago, and Phillip L Geissler. Transition path sampling:
Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem., 53(1):291–318, 2002.
doi: 10.1146/annurev.physchem.53.082301.113146.

16



ACTIVE IMPORTANCE SAMPLING

Anton Bovier. Metastability: A potential theoretic approach. Proceedings of the International Congress of
Mathematicians, page 20, 2006.
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Appendix A. One-dimensional example
To illustrate the necessity of importance sampling for objectives dominated by rare events, consider the
one-dimensional committor problem associated with transitions between the minima located at x = x1 and
x = x2 of the potential V (x) = (1− x2) + x/10, i.e. the minimization of∫ 1

−1

|q′(x)|2e−βV (x)dx (A.1)

The minimizer of this objective function subject to q(x1) = 0, q(x2) = 1 is

q(x) =

∫ x
x1
eβV (y)dy∫ x2

x1
eβV (y)dy

(A.2)
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Figure 4: The loss landscape L(a, b) in (A.4) and the relative error on the estimator ( = std/loss)
when the data is drawn from the Gibbs distribution with density Z−1

[x1,x2] = e−βV (x)

restricted on x ∈ [x1, x2]. At the minimum of the loss (located at the red dot), this
relative error is about 60. Here β = 1/8 (i.e. the energy barrier is 8kBT ) and the optimal
parameters are a ≈ 0.04 and b ≈ 0.11.

For large β, this function is sigmoid-like with a sharp transition from 0 to 1 around x = 0.1. Suppose
that we want to approximate it using the parametric representation

q(x; a, y) = σ((x− a)/b) where σ(z) =
1

1 + e−z
(A.3)

This function does not satisfy the boundary condition exactly, but for a around 0.1 and b small enough, it
does a good job at representing the exact (A.2) (see the top left panel in Fig. 1). Accordingly, let us look at
the loss function as a function of (a, b) in this parameter range, viewed as an expectation of |q′(x; a, b)| the
Gibbs distribution with density e−βV (x) restricted to x ∈ [x1, x2] and properly normalized on that interval:

L(a, b) = Z−1
[−x1,x2]

∫ x2

x1

|q′(x; a, b)|2e−βV (x)dx with Z=
[−x1,x2]

∫ x2

x1

e−βV (x)dx (A.4)

where
|q′(x; a, b)|2 = b−2σ2((x− a)/b)(1− σ((x− a)/b)) (A.5)
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The population and empirical losses were shown in in the bottom panels of Fig. 1: the latter was obtained by
drawing 104 independent samples from Z−1

[−x1,x2]e
−βV (x) using a rejection method, resulting in the empirical

distribution shown in the top right panel of Fig. 1. Here we compute an additional quantity: the variance of
the estimator for the population loss if we use data sampled from Z−1

[x1,x2]e
−βV (x). The result (together with

the population loss) is shown in Fig. 4: when beta is large so that the energy barrier is also large in units of
kBT (here β = 1/8, so that the barrier is 8kBT ), the relative error on the loss becomes large in the regions
close to the minimum of this loss.

Note that in this one-dimensional example, adding a regularizing term to the empirical loss improves its
predictions. However this strategy will not be generically applicable to higher dimensional situations.

Appendix B. Variance reduction improves generalization
Proof [Proof of Proposition 1] Recall that the discrete time updates of the stochastic gradient descent dynam-
ics are obtained from:

θk+1 = θk − α∇θLn(θk), k = 0, 1, 2, . . . (B.1)

Since the miniibatches are draw independently at every step and ∇θLn(θ) is an unbiased estimator of
∇θL(θ), in law (B.1) is equivalent to

θk+1 = θk − α∇θL(θk) +
α√
n
∇θη(θk), k = 0, 1, 2, . . . (B.2)

where η is a random function with mean zero, Eνη(θ) = 0, and covariance

Eνη(θ)η(θ′) = Eν`(x,θ)`(x,θ′)− L(θ)L(θ′). (B.3)

Let us introduce θ̃
k

n defined as

θ̃
k

n =

√
n

α

(
θk − θ̄k

)
(B.4)

where {θ̄k}k∈N0
are the update from the GD scheme in (9) so that

θ̃
k+1

n = θ̃
k −√αn

(
∇θL(θ̄

k
+
√
α/nθ̃

k

n)−∇θL(θ̄
k
)
)

+
√
α∇θη(θ̄

k
+
√
α/nθ̃

k

n). (B.5)

for k = 0, 1, 2, . . .. Taking the limit as n→∞ shows that for each k θ̃
k

ntoθ̃
k
, where {θk}k∈N0

is the solution
of the updating scheme

θ̃
k+1

= θ̃
k − αHkθ̃

k
+
√
αbk, k = 0, 1, 2, . . . (B.6)

where Hk = ∇θ∇θL(θ̄
k
) and {bk}k∈N0

are random vector, independent for different k, with mean zero and
covariance

Bk = Eνbk(bk)T = Eν∇θ`(x, θ̄k)(∇θ`(x, θ̄k))T −∇θL(θ̄
k
)(∇θL(θ̄

k
))T (B.7)

which we assume to be non-zero when the data set is finite.
Next note that the limiting sequence {θ̃k}k∈N0

can be used to deduce that

lim
n→∞

nED[L(θk)− L(θ̄
k
)] = 1

2 tr[CkHk] where Ck = EDθ̃
k
(θ̃
k
)T (B.8)

From (B.6), the tensor Ck satisfies

Ck+1 = Ck − αHkCk − αCkHk + α2HkCkHk + αBk (B.9)
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with C0 = 0 which follows from θ̃
0

= 0 since θ0 = θ̄
0. By Assumption 2, as k → ∞, Hk → H∗,

which is the positive-definite tensor defined in (10), and Bk → B∗, which is the tensor defined in (13). This
guarantees that limk→∞ Ck = C∗, where C∗ is the solution to (12). From (B.8), it also implies that

lim
k→∞

lim
n→∞

nED[L(θk)− L(θ̄
k
)] = lim

k→∞
lim
n→∞

nED[L(θk)− L(θ∗)] = 1
2 tr[C∗H∗] (B.10)

which establishes (11) and ends the proof.

Note that, from (B.6), the kth iterate of θ̃
k

is (using θ̃
0

= 0 with follows from θ0 = θ̄
0)

θ̃
k

=
√
α

k−1∑
p=0

p∏
q=0

(1− αHq)bk−p (B.11)

from which we can get more detailed information about the statistics of the sequence. Note also that, in the
limit as α→ 0, (B.6) reduces to an SDE similar to that of an Ornstein-Uhlenbeck process.

Appendix C. Active sampling by reweighting
The results of Sec. 2 indicate that the variance of the estimator for the gradient of the population loss domi-
nates the generalization error. In view of this, at every step of SGD, instead of sampling the original measure
ν, an option is to sample a modified measure ν̃ and reweight the samples in the estimator accordingly, in
such a way as to minimize the variance of this estimator. To make this concrete let g(x) = dν̃/dν be the
Radon-Nikodym derivative of ν̃ with respect to ν, assume that g is positive everywhere, and let {x̃i}ni=1 be a
batch of independent samples draw from ν̃. Then

1

n

n∑
i=1

∇θ`(x̃i,θ)g−1(xi) (C.1)

is an unbiased estimator for the gradient of population loss and the choice of ν̃ that minimizes the variance
of this estimator, i.e. minimizes∫

Ω

|∇θ`(x̃,θ)|2g−2(x)dν̃(x) =

∫
Ω

|∇θ`(x̃i,θ)|2g−1(xi)dν(x), (C.2)

is

dν̃(x) = g(x)dν(x) with g(x) =
|∇θ`(x,θ)|
Eν |∇θ`(·,θ)| (C.3)

An obvious difficulty with this estimator is that the reweighting factor g(x) contains the factor Eν |∇θ`(·,θ)|
which we do not know. Still, in the context of optimization by SGD, it is useful since any unknown constant
entering the gradient of the loss can be absorbed in the learning rate. To see why consider the following
scheme: Starting from some initial value θ̃

0
, update these parameters using the iteration rule

θ̃
k+1

= θ̃
k − α

n

n∑
i=1

∇θ`(x̃i, θ̃
k
)

|∇θ`(x̃i, θ̃
k
)|
, k = 0, 1, 2, . . . (C.4)

where the batch {x̃i}ni=1 contains independent samples from

dν̃k(x) = Z̃−1
k |∇θ`(x, θ̃

k
)|dν(x) with Z̃k = Eν |∇θ`(·, θ̃

k
)|. (C.5)

Note that this measure can be sampled by the Metropolis-Hastings method or the Metropolis-adjusted Langevin
algorithm without requiring to know its normalization factor Z̃k. Under Assumption 2 we can prove the fol-
lowing equivalent of (11)
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Proposition C.1 The sequence {θ̃k}k∈N0
obtained using the SGD update in (C.4) starting from θ̃

0
= θ̄

0

and using an independent batch of data {x̃i}ni=1 drawn from ν̃k at every step is such that

lim
k→∞

lim
n→∞

nED[L̃n(θk)− L(θ∗)] = 1
2α tr[C̃∗H∗] (C.6)

where ED denotes expectation over all the batches used to compute the sequence θk, and C∗ is the N ×N
tensor that solves

H∗C̃∗ + C̃∗H∗ − αC̃∗H∗C̃∗ = B̃∗ (C.7)

Here B̃∗ is

B̃∗ =

∫
Ω

∇θ`(x,θ∗)[∇θ`(x,θ∗)]T
|∇θ`(x,θ∗)|2

dν̃∗(x) (C.8)

where
dν̃∗(x) = Z̃−1

∗ |∇θ`(x,θ∗)|dν(x) with Z̃∗ = Eν |∇θ`(·, θ̃∗)|. (C.9)

The proof of this proposition is similar to that of Proposition 1. For small α, this shows again that the error
will be controlled by tr B̃∗, which is now trivially given by

tr B̃∗ = 1 (C.10)

This result may look surprising but it is a consequence of the fact that, by using (C.4) we have effectively
absorbed in the learning rate the unknown factor Eν |∇θ`(·,θ)| entering the weights g(x) defined in (C.3). If
we had not done this, tr B̃∗ in (C.10) would be replaced by |Eν |∇θ`(·,θ)||2; this provides a point of compar-
ison with the scheme discussed in Proposition 1, since from (13) trB∗ = Eν |∇θ`(·,θ)|2 ≥ |Eν |∇θ`(·,θ)||2.
Therefore we would reduce the variance.

Coming back to the scheme defined by (C.4), one feature that makes it somewhat academic is that we still
need to sample ν̃k: while this can in principle be done via the Metropolis-Hastings method or the Metropolis-
adjusted Langevin algorithm, we have no guarantees that this sampling will be fast—for example, even
if ν̃ has a density ρ(x) with respect to the Hausdorff measure on Ω, there is no guarantee that its potential
− log ρ(x) will be convex or even that it will have a single minimum. For these reasons, we instead implement
the alternative active importance sampling strategy based on umbrella sampling and replica exchange which
we deem more robust and more widely applicable.

Appendix D. Approximation of the committor with a neural network

D.1. Representation
Neural networks (NN) offer flexibility to the representation and relative ease of optimization, making them
a natural choice for a representation of the committor. For example, if we use a single hidden layer neural
network with nonlinearity ϕ (e.g., ReLU) passed through a thresholding function σ (e.g., a sigmoid function,
σ(z) = 1/(1 + e−z)) to ensures that q(x) ∈ [0, 1], ∀x ∈ Rd, this amounts to taking

q(x,θ) = σ

[
1

n

n∑
i=1

ϕ(x,θi)

]
(D.1)

where we use θi with i = 1, . . . , n to denote the parameters in each neural units and θ = (θ1, . . . ,θn) to
denote all of them collectively. In practice, the architecture of the neural network will be substantially more
intricate than the single hidden layer network (D.1).
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D.2. Computing the gradients
Optimization of the neural network representation of the committor (D.1) by gradient descent (GD) requires
estimating the gradient of the objective function with respect to the parameters. For example, if we use (D.1)
in the Lagrangian defined in (37), we have

1
2∇θi

L(x, q) ≡ 1
2∇θi

`(x,θ) = ∇θi
∇xq∇xq + λq∇θi

q1A − λ(1− q)∇θi
q1B (D.2)

Noting that, with σ(z) = 1/(1 + e−z),

∇xσ(f(x)) = σ(f(x)) (1− σ(f(x)))∇xf(x) (D.3)

and similarly for ∇θ we can derive explicit expressions for the factors at the right hand side of (D.2). In
particular, we see that

∇xq(x,θ) =
1

n
q(x,θ)(1− q(x,θ))

n∑
i=1

∇xφ(x)∇φϕ(φ(x),θi), (D.4)

∇θiq(x,θ) =
1

n
q(x,θ)(1− q(x,θ))∇θiϕ(φ(x),θi) (D.5)

and

∇θi
∇xq(x,θ) =

1

n
∇θi

q(x,θ)(1− 2q(x,θ))

n∑
j=1

∇xφ(x)∇φϕ(φ(x),θj)

+
1

n
q(x,θ)(1− q(x,θ))∇xφ(x)∇φ∇θi

ϕ(φ(x),θi).

(D.6)

Appendix E. Alternative formulation of the committor and boundary conditions
The variational problem of determining the committor function can be reinterpreted via a solution to the
following PDE Lu and Vanden-Eijnden (2014),

Lq̃ = τeβV (x) [δ(x− a)− δ(x− b)] . (E.1)

where τ > 0 is a parameter, and δ(x− a) and δ(x− b) denote the Dirac delta distribution centered at a and
b respectively. Given a solution to (E.1), it is straightforward to verify that the committor between the sets

A = {x|q̃(x) ≤ q̃−} 3 a
B = {x|q̃(x) ≥ q̃+} 3 b

is given by

q(x) =
q̃(x)− q̃−
q̃+ − q̃−

(E.2)

for x ∈ (A ∪B)c.
We can use the variational optimization algorithm Alg.1 to compute q̃ where we penalize the cost func-

tional to obtain the loss function,

Cλ[q̃] = C[q̃] + τ (q̃(a)− q̃(b)) . (E.3)

This formulation offers several advantages compared to the formulation discussed in the main text. First,
because the range of q̃ is all of R, there is no need to use thresholding functions that could affect the magnitude
of gradients and hence the rate of convergence of the optimization. Secondly, to use the penalized objective
of the main text, we must draw samples from the metastable states A and B. If those states are difficult to
sample, the boundary conditions here require knowledge of only two points a ∈ A and b ∈ B.
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