
Proceedings of Machine Learning Research vol 145:1–28, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

Parameter Estimation with Dense and Convolutional Neural Networks
Applied to the FitzHugh–Nagumo ODE

Johann Rudi JRUDI@ANL.GOV

Julie Bessac JBESSAC@ANL.GOV

Amanda Lenzi ALENZI@ANL.GOV

Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract
Machine learning algorithms have been successfully used to approximate nonlinear maps under
weak assumptions on the structure and properties of the maps. We present deep neural networks
using dense and convolutional layers to solve an inverse problem, where we seek to estimate param-
eters of a FitzHugh–Nagumo model, which consists of a nonlinear system of ordinary differential
equations (ODEs). We employ the neural networks to approximate reconstruction maps for model
parameter estimation from observational data, where the data comes from the solution of the ODE
and takes the form of a time series representing dynamically spiking membrane potential of a bio-
logical neuron. We target this dynamical model because of the computational challenges it poses in
an inference setting, namely, having a highly nonlinear and nonconvex data misfit term and permit-
ting only weakly informative priors on parameters. These challenges cause traditional optimization
to fail and alternative algorithms to exhibit large computational costs. We quantify the prediction
errors of model parameters obtained from the neural networks and investigate the effects of net-
work architectures with and without the presence of noise in observational data. We generalize our
framework for neural network-based reconstruction maps to simultaneously estimate ODE parame-
ters and parameters of autocorrelated observational noise. Our results demonstrate that deep neural
networks have the potential to estimate parameters in dynamical models and stochastic processes,
and they are capable of predicting parameters accurately for the FitzHugh–Nagumo model.
Keywords: Parameter estimation; Inverse problem; Reconstruction maps; Dense and convolutional
neural networks; Nonlinear ordinary differential equation; FitzHugh–Nagumo.

1. Introduction

We consider inverse problems with the aim of estimating parameters from given observational data,
where the parameters give rise to the data through the solution of a parametrized physical model.
Such inverse problems have in the past been solved deterministically with techniques from opti-
mization (Tarantola, 2005) or in a statistical/Bayesian framework using sampling methods, particle
filters, and Kalman filters (Kaipio and Somersalo, 2005). The current work investigates new ap-
proaches to solving particular inverse problems that exhibit computational challenges prohibiting
effective use of the established solution techniques mentioned above. We propose to computation-
ally learn solution operators for inverse problems based on deep neural networks because of their
well-known potential of finding generalizable nonlinear maps. We explore neural network (NN)
architectures consisting of a sequence of dense, or fully connected, layers and convolutional neural
networks (CNNs).

c© 2021 J. Rudi, J. Bessac & A. Lenzi.

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Figure 1: Left, top graph: Solution of FitzHugh–Nagumo system of two ODEs (blue and gray lines)
generated with true parameters of the inverse problem. Left, bottom graph: Data (orange
dots) of inverse problem stemming from the membrane potential of the solution with
additive correlated noise. Right: Manifold of highly nonlinear loss function (colors and
contours), with respect to parameters θ0 and θ1, of the inverse problem governed by the
FitzHugh–Nagumo model when using the data from the bottom left graph and a weakly
informative (i.e., wide) prior term.

We target inverse problems to estimate parameters in an ordinary differential equation (ODE)
that models the dynamically spiking membrane potential of a (biological) neuron. Spiking neurons
in the brain and spinal cord are typically modeled by systems of nonlinear ODEs. These ODE
models govern electrical voltage spikes that are generated in response to current stimuli. The output
of one such ODE has the form of a spiking voltage time series, which can be obtained in laboratory
experiments and takes the role of observational data in our inverse problem. These systems of
ODEs contain uncertain parameters that control the opening and closing of ion channels of a cell
membrane and consequently change voltage spike behavior.

Computational challenges arise from the highly nonlinear and nonconvex loss, or objective,
function of the inverse problem (Buhry et al. (2008); see also the manifold in Figure 1, right),
with sharp gradients, strong nonlinear dependencies between parameters, and potentially multiple
local minima. The loss cannot be sufficiently regularized by a convex additive term stemming
from a regularization or prior term, because of lack of knowledge about the range of parameter
values (Gutenkunst et al., 2007; Prinz et al., 2004) and because this would largely eliminate the
information from data and model. We therefore explore new techniques to solve such challenging
inverse problems by fitting NN-based reconstruction maps that approximate solution operators for
our inverse problem by means of mapping observational data to model parameters.

Contributions We consider neural networks with dense and convolutional layers and explore dif-
ferent NN architectures with a range of layers, dense units, and CNN filters. We quantify the
capability of the networks to approximate reconstruction maps of inverse problems with several
statistical metrics. Through these metrics, we aim to provide understanding about the effects of
network choice on inference performance. The numerical results show that NNs can estimate pa-
rameters of spiking neuron models with high accuracy.

We investigate the predictive skills of NNs while changing the sizes of training sets. Addition-
ally, we conduct experiments on partially observed data to numerically demonstrate that CNNs,
but not dense NNs, are capable of detecting underlying properties or dynamics of a time series.

2

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Moreover, since observational data are in practice most likely corrupted by noise, we present a
noise model and analyze the influence of noise in training and/or testing data based on numerical
experiments. To go beyond estimating ODE parameters, we extend our framework for NN-based
reconstruction maps to simultaneously estimate parameters of the autocorrelated noise model from
noisy observational data.

Related work The literature on parameter estimation for models of neural dynamics spans across
various scientific communities, approaches, and neuron models. Here, we highlight only closely
related publications and refer to the literature within these publications for further information. The
neuron model by Hodgkin and Huxley (1952) is often used in the literature. It consists of a nonlinear
system of four ODEs. The FitzHugh–Nagumo equations (introduced in Section 2.1) simplify the
Hodgkin–Huxley model to a nonlinear system of two ODEs.

Common approaches for parameter estimation in FitzHugh–Nagumo and Hodgkin–Huxley mod-
els make use of heuristics and trial and error and may consist of intricate sequences of regression
steps, as summarized by Buhry et al. (2008) and Van Geit et al. (2008). The techniques employed
are, for instance, simulated annealing, differential evolution, genetic algorithms, and brute-force
grid search (Alonso and Marder, 2019). These approaches have the disadvantage of being compu-
tationally expensive or are slow to converge. Using gradient descent for finding the minimizer of
a Hodgkin–Huxley-based inverse problem (Doi et al., 2002), on the other hand, suffers from the
strong nonlinearities in the objective and requires good initial guesses. Alternative approaches es-
timate parameters with maximum likelihood methods and build approximations of the likelihood
term (Doruk and Abosharb, 2019). Recently, Kalman filters have been utilized, for instance, by
Deng et al. (2009); ensemble Kalman filters are combined with reduced order models (Pagani et al.,
2017), and augmented ensemble Kalman filters (Arnold and Lloyd, 2018) are employed for periodi-
cally time-varying parameters. In a data assimilation framework, Hamilton et al. (2018) propose an
ensemble Kalman filter for time series with large amounts of noise. Furthermore, statistical infer-
ence in a Bayesian framework is attempted with approximate Bayesian computation (ABC) (Daly
et al., 2015) and Monte Carlo sampling (Daly et al., 2018). Alternatively to time series data, Jolivet
et al. (2006) and Naud et al. (2014) develop inference methods for spike time data.

While machine learning techniques generally are used for prediction and classification tasks in a
wide range of applications, they are employed more sparsely to estimate parameters of mathematical
models. For instance, Morshed and Kaluarachchi (1998) (for groundwater modeling) and Dua
(2011) (for kinetik models) utilize NNs within their parameter estimation frameworks for systems
described by partial or ordinary differential equations, they however do not consider approximating
reconstruction maps. Parikh et al. (2020) employ generative adversarial networks to retrieve model
parameters in stochastic inverse problems. Parameter estimation approaches for neural dynamics
based on NNs are proposed (Gonçalves et al., 2020), where an NN is trained to perform posterior
density estimates using mixtures of Gaussian or normalizing flows. While Gonçalves et al. (2020)
show promising approximations of posterior features, their approach comes at the cost of large
training sets (of order 105), which is about two orders of magnitude larger than in our work. Each
training sample requires the solution of an ODE model and, if performed frequently, constitutes
the major computational cost. For such large numbers of training samples, Monte Carlo methods
(Ballnus et al., 2017) become preferable alternatives, especially if they could be augmented with
reduced order models (Qian et al., 2020; O’Leary-Roseberry et al., 2020). Moreover, Gonçalves
et al. (2020) do not analyze the effects of noise in training and/or testing data, and training set sizes

3

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

are not varied. Their network architectures are prescribed, which reflects an inductive bias (Cranmer
et al., 2020) by knowing which network performs well for a given problem.

In statistical models, machine learning is used for direct estimation of model parameters (Chon
and Cohen, 1997), where NNs are used for estimating autoregressive moving-average processes
parameters. Radev et al. (2020) propose a suite of two NNs to estimate summary statistics of the
data, infer parameters of a model, and return samples from the posterior distributions. Other works
focus on supplementing or complementing statistical inferential techniques with machine learning.
In particular, problems with intractable likelihood are often solved with the ABC method involving
the sampling of synthetic data and summary statistics of the observations. Creel (2017) and Jiang
et al. (2017) uses an NN to predict the parameters from artificially generated data, which are then
used as an estimate of the posterior mean of an ABC procedure.

The remainder of the paper is organized as follows. Section 2 introduces the forward problem
governed by the FitzHugh–Nagumo model and the corresponding inverse problem. It then presents
NN architectures utilized for solving the inverse problem, the generation of training and testing sam-
ples, and metrics to evaluate NN-based model parameter estimates. Section 3 discusses numerical
results and quantifies prediction errors obtained from trained NNs. We consider a range of network
architectures, different sizes of training data, and the effects of noise. Section 4 presents conclusions
and open questions. Background information is collected in the Appendix.

2. Neural network-based reconstruction maps for inverse problems

This section introduces the forward problem that is governed by the FitzHugh–Nagumo ODE and
the inverse problem to estimate model parameters of the ODE from time series data. Furthermore,
we describe the NN architectures that will be used to perform the inference. We conclude with a set
of metrics used to evaluate the errors of model parameter predictions coming from NNs.

2.1. Forward and inverse modeling of spiking neurons

The FitzHugh–Nagumo (FitzHugh, 1961; Nagumo et al., 1962) equations describe spiking neurons
via a system of two ODEs,

du

dt
= γ

(
u− u3

3
+ v + ζ

)
, (1a)

dv

dt
= −1

γ
(u− θ0 + θ1v) , (1b)

where the unknowns of the ODE are the membrane potential u = u(t) and the recovery variable
v = v(t). ζ denotes the total membrane current and is a stimulus applied to the neuron, which we
assume to be constant in time. γ determines the strength of damping and is assumed to be known
and constant. θ0 and θ1 are the model parameters that we consider for inference, because they
govern two important characteristics of the oscillating solution of the ODE (1), namely spike rate
and spike duration (see Appendix A for more details). ODE (1) is augmented with initial conditions
u(0) = u0, v(0) = v0. An example solution of (1) is shown in the top left panel of Figure 1,
using inference parameters θ0 = 0.7, θ1 = 0.8, constants γ = 3.0, ζ = −0.4, and initial condition
u0 = v0 = 0. While the FitzHugh–Nagumo model formulation is relatively simple compared with
larger systems of ODEs, like the Hodgkin–Huxley equations, it exhibits most of the computational
challenges when considered as the forward problem in an inference setting, such as described next.

4

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

We target the inverse problem, where we are given observational data

d(t) := uθ∗(t) + η(t), (2)

composed of uθ∗(t), which is the first component (1a) of the solution of ODE (1) with unknown true
parameters θ∗ := (θ∗0, θ

∗
1), and added correlated noise η(t) (see Section 3.4 for more information

about the noise model). Our goal is to find parameters θ := (θ0, θ1) that are consistent with data
d(t) and model output uθ(t) for all t. The mathematical formulation for observational data as
in (2) is commonly used (Cressie and Wikle, 2015) and does not preclude uniqueness of inferred
parameters despite realizations of noise being nondeterministic. Note that the second variable v
of the ODE (1) is excluded from the data because typically only the membrane potential can be
observed in experiments. In a statistical/Bayesian framework (Kaipio and Somersalo, 2005), the
inverse problem translates to finding the posterior probability density π(θ |d) of the parameters θ
given data d, where d is a discretization of d(t). The posterior is, via Bayes’ rule, composed of a
likelihood term π(d |θ) and a prior term π(θ),

π(θ |d) ∝ π(d |θ)π(θ). (3)

In this work, we assume little knowledge about the range of parameter values θ, hence we target
prior distributions that are merely weakly informative (i.e., relatively large variance of π(θ)). In
order to construct a weak prior, we consider that parameters of the FitzHugh–Nagumo model are
in practice chosen to be inside the interval θ0, θ1 ∈ [0, 1]. Note that the parameter bounds are not
required for solvability of the FitzHugh–Nagumo equations (1). Due to these bounds, our prior
specifies that each parameter is normal and i.i.d. (independent identically distributed),

θ0 ∼ N
(
θ̄0,prior, σ

2
0,prior

)
= N

(
0.4, 0.32

)
, θ1 ∼ N

(
θ̄1,prior, σ

2
1,prior

)
= N

(
0.4, 0.42

)
, (4)

where [0, 1] ⊂ [θ̄i,prior− 2σi,prior, θ̄i,prior + 2σi,prior], i = 0, 1. Additionally, we limit the range of the
parameters to be inside the intervals

θ0 ∈ [−0.2, 1.0] and θ1 ∈ [−0.4, 1.2] (5)

by means of rejecting prior samples outside of these bounds. The prior bounds (5) restrict samples
of θ to ranges that contain the unit interval, and, moreover, they limit combinations of parameters
where the FitzHugh–Nagumo model generates zero spikes or just one spike (see Appendix A).

For the NN-based solution techniques proposed in the following Section 2.2, we target point
estimates of θ directly. We observe an analogy in the context of Bayesian inference, since one type
of point estimate of the posterior density is the maximum a posteriori (MAP) point (Calvetti and
Somersalo, 2007; Stuart, 2010). The MAP point is obtained by minimizing the negative log of (3),

θ̂MAP = arg min
θ

[
− log

(
π(d |θ)π(θ)

)]
= arg min

θ

1
2

∥∥∥∥d(t)− uθ(t)

σnoise

∥∥∥∥2

L2

+ 1
2

∣∣θ − θ̄prior
∣∣2
Σ−2

prior
, (6)

where σnoise denotes the standard deviation of the data noise, which is related to η in (2); θ̄prior :=
(θ̄0,prior, θ̄1,prior) is the prior mean, and Σprior := diag(σ0,prior, σ1,prior) is the prior standard deviation.
The resulting highly nonlinear loss function pertaining to minimization (6) is shown in Figure 1
(right), presenting significant computational challenges, in particular for gradient-based solvers.
Note that our proposed NN-based reconstruction maps are not guaranteed to compute the MAP
estimate or other known estimates, such as, maximum likelihood and conditional mean. The dis-
cussion of the MAP estimate serves as an illustration of computational challenges and as an analogy
to interpret the results provided by NNs in Section 2.2.

5

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

2.2. Deep neural networks for inverse problems

We construct NNs to computationally learn reconstruction maps of parameter estimation problems.
We set up the training data such that the inputs of the NN are time series (2) coming from the
solution of the ODE (1) and the outputs are the corresponding parameters θ that generated the time
series. Since we train the NN to fit a mapping of time series to parameters in the reverse order of
the forward problem, the NN is learning to represent a pseudoinverse of the forward operator (Adler
and Öktem, 2017; Fan et al., 2019; Khoo and Ying, 2019), hence approximately solving an inverse
problem. We define our NN-based reconstruction map as

θ̂ := yL, y` = F`(y`−1) for 1 ≤ ` ≤ L, y0 := d, (7)

where the NN input d is a discrete version of the time series (2), F` denotes layer ` of the NN, and
θ̂ is the network’s output, which are predicted model parameters.

Training and testing data for neural networks We generate training and testing data for NNs
by sampling parameters θ from their prior distributions (4) and discarding samples outside of prior
bounds (5). By choosing samples from the prior to generate training data, we want the NN re-
construction (7) to learn the most important features of our inverse problem according to prior
knowledge. Furthermore, using the prior for generating training data creates a framework that is
analogous to the original Bayesian inverse problem (3). Having obtained samples of θ, we solve the
ODE (1) and store the membrane potential uθ(ti) at prescribed time steps, ti, i = 1, . . . , Nt, with
uniform step size ∆t. The next two paragraphs describe the different architectures for the layers
denoted by F` in Equation (7).

Dense neural network (dense NN) Our first NN architectures consist of a sequence of dense, or
fully connected, layers (Goodfellow et al., 2016). Each dense layer ` consists of nu = nu(`) units,
or nodes, and each unit of one layer is connected to all other units of a neighboring layer. One dense
layer is composed of an affine mapping and a nonlinear function, F`(y`−1) = φ(W` y`−1 + b`),
where the matrix W` ∈ Rnu(`)×nu(`−1) are the weights and b` ∈ Rnu(`) is the bias of layer `. The
nonlinear activation function φ is applied element-wise. A typical choice for φ is the rectified linear
unit (ReLU) function (Schmidhuber, 2015). We, however, utilize a smoother activation similar to
ReLU, called Swish (Elfwing et al., 2018). NNs with Swish activation have been shown to suffer
less from vanishing gradient problems compared with ReLU (Hayou et al., 2018), and this behavior
has been observed by the authors when training deeper networks. For our numerical experiments
in Section 3, we use dense NNs with 2–16 layers and 4–128 units nu in all layers to cover a wide
range of network sizes, which we will demonstrate to be sufficient for accurate approximation of
reconstruction maps. The dense NNs amount to a total of between 4,034 and 442,114 trainable NN
parameters in the form of weight matrices W` and biases b`, which are optimized with stochastic
gradient descent by using the Adam algorithm (Kingma and Ba, 2015) and the mean squared error
(MSE) loss function (see Section 3.1 for more details).

Convolutional neural network (CNN) CNNs have been successfully used in two-dimensional
image-processing tasks (LeCun et al., 1999). We take advantage of the local dependence structure
inherent in CNNs to fit reconstruction maps that have one-dimensional time series with uniform
time steps as input. We therefore exploit locality in our time series with convolutional layers. A
convolutional layer is composed of nf filters, and each filter is associated with one kernel that is
applied to small sections of the time series. The nf kernels of one convolutional layer are connected

6

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

to all neighboring layers, similarly to the units of dense layers described above. The weights of
these connections constitute the NN parameters to be optimized. Because the weights are shared
across time, significantly fewer weights have to be optimized.

Our convolutional architectures borrow from CNNs for image classification (Krizhevsky et al.,
2012), where we interleave convolutional layers with pooling layers (also called downsampling),
which aggregate a small block from a convolutional step into a single value. Each convolutional
layer, y` = F`(y`−1), reduces the size of output vectors y` compared with input y`−1, here by a
factor of 1/2; the same reduction holds for pooling layers. The reduction in size is complemented
with an increase of nf filter counts, here by a factor of 2, from one convolutional layer to the
next. After a few combinations of convolution and pooling, the output is passed to a sequence of
dense layers, which concludes the CNN. Our CNNs are equipped with 2–4 pairs of convolution and
pooling layers with varying numbers of filters (see Section 3.2 for more details), and we keep the
dense layers at the end of the network fixed to two layers with nu = 32 units. These CNNs achieve
NN parameter counts between 5,278 and 261,442. We utilize the same Swish activation function
and optimization setup as for dense NNs described above.

2.3. Evaluation metrics for inference results

To assess the quality of the prediction from NNs, we carry out both qualitative and quantitative
evaluations in Section 3. Qualitative assessments are done through scatterplots and time series
plots, and the quantification of prediction capabilities is evaluated with several metrics.

In particular, we decompose the commonly used mean squared error (MSE) into its squared bias
and centered MSE (C-MSE) components to assess the respective contributions of the mean and of
the fluctuations (variability) of the prediction mismatch (Taylor, 2001):

MSE(θ, θ̂) :=
1

M

M∑
j=1

(
θ(j) − θ̂(j)

)2

=

=Squared bias︷ ︸︸ ︷(
θ̄ − ¯̂

θ
)2

+

=C-MSE︷ ︸︸ ︷
1

M

M∑
j=1

[(
θ(j) − θ̄

)
−
(
θ̂

(j) − ¯̂
θ
)]2

,

where θ is the true model parameter, θ̂ is the predicted parameter, θ̄ (resp. ¯̂
θ) is the mean of true

parameters (resp. estimated parameters), and M is the training set size. We use superscript notation
(e.g., θ(j)) to identify different parameters in the training set. A smaller MSE implies lower errors
and hence better predictions.

Since MSE has the disadvantage of being sensitive to large errors, we report the median of the
absolute percentage error (Median-APE),

∣∣θ(j) − θ̂(j)∣∣/∣∣θ(j)
∣∣. This also provides a scale-invariant

metric that is less sensitive to outliers than a mean statistic is. The coefficient of determina-
tion R2 is used to assess the percentage of variability explained by the prediction R2 := 1 −∑M

j=1

(
θ(j) − θ̂(j))2/∑M

j=1

(
θ(j) − θ̄

)2
. The R2 takes values between−∞ and 1; the closer R2 is

to the ideal value 1, the more variability is explained by the prediction.

3. Numerical experiments

In this section we numerically analyze the accuracy of model parameter estimates from dense NNs
and CNNs defined in Section 2.2. We investigate the effects of different network architectures on
the prediction errors of FitzHugh–Nagumo model parameters from noise-free time series data, and
we analyze the sensitivity of predictions in the presence of noise in training and/or testing data. For
these numerical studies, we utilize the metrics described in Section 2.3.

7

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Table 1: Settings for training/testing data
and optimization algorithms.

Training & optimization setting Value

Number of training samples (N) 1000
Number of testing samples (M) 2000
Number of validating samples 2000
Size of time series (Nt) 1000

Loss function MSE
Optimizer Adam
Learning rate (or step length) 0.002
Batch size 32
Number of epochs with noise-free data 200
Number of epochs with noisy data 50

Table 2: Settings for dense and convolutional neu-
ral network architectures.

Neural network setting Value

Activation function (dense NN & CNN) Swish

CNN kernel size 3
CNN kernel stride 2
CNN pooling type average
CNN pooling size 2
CNN pooling stride 2
CNN padding none
CNN flattening into dense layers 2 layers, nu = 32

3.1. Experimental setup

The implementation of our algorithms is carried out in Python. We use the explicit Runge–Kutta
method of order 3(2) (RK23) for time integration of the FitzHugh–Nagumo ODE, and we utilize
TensorFlow/Keras (version 2.3.1) for implementing the neural networks. To generate data sets for
training, validating, and testing the networks, we simulate the ODE (1) for 200 milliseconds and
store the membrane potential at equidistant steps every ∆t = 0.2, which results in a time series of
sizeNt = 1000 for each model parameter θ ∈ R2. Additionally, we use the Fourier transform of the
time series for training and prediction in Sections 3.3 and 3.5. We randomly generate sets of training,
validating, and testing data based on the prior of θ as described in Section 2. Training is performed
withN = 1000 samples unless otherwise specified. 2000 samples are used for validation and testing
is carried out with a sample size of M = 2000. Table 1 provides a summary of the experimental
settings regarding the optimization, and Table 2 shows settings for network architectures.

3.2. Exploration of neural network architectures

In the following, we investigate the influence of different NN architectures from Section 2.2 on pre-
dictions performed on the validation data set. We explore effects on predictive skills while varying
the number of dense layers and number of units per layer, in the case of dense NNs, and the number
of convolutional layers and filters per layer, in the case of CNNs. The training of the networks as
well as predictions are performed on noise-free time series data, which represents an ideal scenario
for parameter estimation. Noise-free data have the advantage that optimization algorithms, using
stochastic gradient descent, can run for sufficiently high iteration counts (or epochs), without lead-
ing to overfitting due to noise in the data. This allows us to train the networks relatively well and to
investigate differences in predictions that are largely due to network architectures. Prediction results
with noisy observational data are crucial in practice and are presented in Section 3.4.

The results in this section are augmented with cross-validation experiments and a study on the
sensitivity on the initialization of NN parameters for selected NN architectures in Appendix B.

Model parameter predictions with dense NNs The prediction capability of dense NNs are eval-
uated with the squared bias and C-MSE metrics in Table 3 for the number of dense layers varying
from 2 to 16 and the number of units per layer nu between 4 and 128. Corresponding evalua-

8

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Table 3: Squared bias (C-MSE) of model parameter predictions (noise-free), using dense NNs with
variable numbers of layers and units per layer nu.

nu 2 layers 4 layers 8 layers 12 layers 16 layers

4 1.2× 10−4 (0.0154) 1.0× 10−5 (0.0085) 3.6× 10−4 (0.0209) 5.0× 10−4 (0.0304) 1.0× 10−4 (0.0269)
8 1.2× 10−4 (0.0031) 1.0× 10−4 (0.0059) 2.8× 10−4 (0.0024) 3.2× 10−5 (0.0036) 1.6× 10−4 (0.0225)

16 5.2× 10−5 (0.0023) 6.2× 10−5 (0.0023) 8.6× 10−5 (0.0017) 1.6× 10−5 (0.0030) 1.3× 10−4 (0.0033)
32 8.4× 10−6 (0.0020) 3.7× 10−5 (0.0020) 1.1× 10−5 (0.0017) 2.5× 10−5 (0.0019) 2.6× 10−5 (0.0025)
64 1.1× 10−4 (0.0026) 6.4× 10−5 (0.0022) 9.8× 10−5 (0.0018) 2.0× 10−4 (0.0033) 8.6× 10−6 (0.0026)
128 5.3× 10−4 (0.0090) 9.7× 10−6 (0.0015) 4.9× 10−5 (0.0022) 2.3× 10−5 (0.0026) 1.1× 10−4 (0.0023)

Table 4: Median-APE (R2) of model parameter predictions (noise-free), using dense NNs.

nu 2 layers 4 layers 8 layers 12 layers 16 layers

4 0.176 (0.835) 0.065 (0.916) 0.103 (0.793) 0.239 (0.693) 0.203 (0.732)
8 0.059 (0.968) 0.051 (0.944) 0.049 (0.973) 0.042 (0.965) 0.182 (0.787)
16 0.040 (0.976) 0.044 (0.975) 0.032 (0.982) 0.029 (0.971) 0.046 (0.967)
32 0.029 (0.979) 0.025 (0.979) 0.026 (0.983) 0.026 (0.980) 0.059 (0.974)
64 0.043 (0.972) 0.029 (0.977) 0.038 (0.980) 0.063 (0.967) 0.045 (0.974)

128 0.082 (0.905) 0.019 (0.985) 0.035 (0.977) 0.051 (0.973) 0.052 (0.976)

tions with the Median-APE and R2 metrics are shown in Table 4. The tables highlight in red those
configurations leading to relatively poor predictions and in green those leading to relatively good
predictions. Overall, we observe a low error in average squared bias (below 10−3) and mild vari-
ations of the errors, expressed in C-MSE values below 10−2, showing that a large contribution to
the total MSE is due to the mismatch in variability between true and predicted parameters. Ad-
ditionally, the scale invariant metric Median-APE assumes values mostly below 10−1 and the R2

metric mostly above 0.95. From these tables, we can deduce that networks with 2–12 layers and
16–64 units per layer lead to the lowest prediction errors (green cells in Tables 3, 4). Networks with
small unit counts, such as 4, however, deteriorate in their prediction skills, because they do not offer
sufficient degrees of freedom to represent a reconstruction map. Furthermore, deeper networks with
large numbers of layers, such as 16, do not offer any improvements of prediction errors compared
with shallower architectures. Due to these results, we select the dense NN architecture with 4 layers
and nu = 32 units per layer for cross-validation and inspection of sensitivity to initialization of NN
parameters (see Appendix B); and we carry out subsequent experiments with this choice of dense
NN. Next, we improve upon the already good results of dense NNs using convolutional layers.

Model parameter predictions with CNNs Analogous to the results with dense NNs, we now
consider CNNs while changing the number of convolutional layers and the number of filters nf
per layer. Two dense layers with 32 units follow the convolutional layers and remain fixed during
these experiments. Table 5 shows evaluations with squared bias and C-MSE metrics, and Table 6
considers the Median-APE and R2 metrics. For brevity, we express the convolutional layers as a
list, for instance nf × [1, 2, 4], which denotes (nf × 1) filters in the first layer, (nf × 2) filters in
the second layer, and (nf × 4) filters in the third layer. Tables 5 and 6 show that CNNs can further
reduce the prediction errors for our inverse problem compared with dense NNs. This improvement
is demonstrated by C-MSE values below 10−3 (one order of magnitude lower than with dense NNs)
and R2 values mostly above 0.99 (previously 0.95–0.98 with dense NNs), which is very close to the

9

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Table 5: Squared bias (C-MSE) of model parameter predictions (noise-free), using CNNs with vari-
able numbers of convolutional layers and filters per layer nf .

nf nf × [1, 2] nf × [1, 2, 4] nf × [1, 2, 4, 8]

2 5.2× 10−5 (0.000 89) 1.3× 10−5 (0.000 61) 6.6× 10−7 (0.000 56)
4 4.5× 10−5 (0.000 69) 4.2× 10−6 (0.000 48) 2.7× 10−5 (0.000 45)
8 3.0× 10−7 (0.000 71) 1.8× 10−5 (0.000 48) 2.0× 10−5 (0.000 44)

16 2.2× 10−5 (0.000 66) 4.5× 10−5 (0.000 54) 3.0× 10−5 (0.000 65)
32 1.7× 10−5 (0.001 08) 2.5× 10−4 (0.000 64) 1.4× 10−4 (0.000 51)

Table 6: Median-APE (R2) of model parameter predictions (noise-free), using CNNs.

nf nf × [1, 2] nf × [1, 2, 4] nf × [1, 2, 4, 8]

2 0.022 (0.990) 0.017 (0.993) 0.017 (0.994)
4 0.023 (0.992) 0.016 (0.995) 0.013 (0.995)
8 0.017 (0.992) 0.018 (0.994) 0.016 (0.995)

16 0.018 (0.993) 0.022 (0.993) 0.026 (0.993)
32 0.021 (0.988) 0.032 (0.991) 0.033 (0.993)

ideal R2 of 1.0. These improvements relative to dense NN can be attributed to the CNNs exploiting
local dependence information of neighboring points in the time series.

We additionally observe that CNNs with only two convolutional layers yield higher prediction
errors than with three and four layers. Thus the short networks do not offer sufficient degrees
of freedom to adapt to the reconstruction map of the inverse problem. Moreover, increasing the
number of filters to nf = 16 and beyond shows no benefit for predictive skills. The best results
are achieved with 3–4 convolutional layers and nf = 4, . . . , 8, which we highlight with green in
the tables. Because of the results, we select the CNN consisting of 3 convolutional layers with 8,
16, and 32 filters, in short denoted by nf × [1, 2, 4], nf = 8, for cross-validation and inspection
of sensitivity to initialization of NN parameters (see Appendix B); and we carry out subsequent
numerical experiments with this choice of CNN.

3.3. Learning capabilities of neural networks for partially observed time series

This section demonstrates numerically how the networks are learning as we try to find answers to
the higher-level question: Is a NN merely “remembering” a time series or is it learning underlying
properties or dynamics? To this end, we design an experiment where the time series of the training
data from Section 3.1 is split into two halves of length Nt/2 = 500, hence doubling the number
of training samples from N = 1000 to 2000. After training, the predictions are performed on time
series of the testing data that are also of length Nt/2 = 500. However, we extract the following five
arbitrary overlapping intervals from the original testing data of length Nt = 1000 (see Section 3.1):
[30, 530), [146, 646), [174, 674), [362, 862), [370, 870); thus increasing the amount of testing sam-
ples from M = 2000 to 10 000. In addition to using time series data, we use a second input data
type by replacing each time series by its Fourier transform; and a third input data type by combin-
ing time series and Fourier transform. The results in Tables 7 and 8 clearly show the advantage of
CNNs over dense NNs. While the CNN’s accuracy in this setting is similar to the one presented in
Section 3.2, the dense NN performs poorly (R2 < 0.5 with time series data). The dense network’s

10

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Table 7: Predictions with partially observed
time series (noise-free), using a dense
NN with 4 layers, nu = 32; perfor-
mance is poor compared with CNNs.

Data type Sq. bias C-MSE Med.-APE R2

Time 3.51× 10−3 0.0534 0.2632 0.475
Fourier 2.48× 10−4 0.0312 0.1478 0.620
Time & Fourier 4.27× 10−3 0.0468 0.2503 0.528

Table 8: Predictions with partially observed
time series (noise-free); using a CNN
with nf × [1, 2, 4], nf = 8; perfor-
mance similar as with full time series.

Data type Sq. bias C-MSE Med.-APE R2

Time 8.38× 10−5 0.003 34 0.0235 0.970
Fourier 1.70× 10−4 0.024 56 0.1235 0.685
Time & Fourier 8.59× 10−6 0.002 22 0.0289 0.980

prediction capability improves when Fourier data is used; however, the model parameter predic-
tions from a Fourier spectrum are significantly worse compared with previous results using (full)
time series data (Tables 3, 4). Overall, we conclude from these results that only CNNs demonstrate
a capability to extract crucial properties of the time series that are important for inferring model
parameters from arbitrary, partial observations. This is presumably achieved by the shift-invariant
kernel of convolutional layers. Thus, the results suggest that CNNs not simply memorize patterns,
but rather recognize properties or dynamics of the ODE.

3.4. Parameter estimation in the presence of noise in observational data

Noise model We consider an additive noise model that is first-order autoregressive in time and
widely used for representing time series. The autoregressive process is parametrized by a correlation
parameter ρ, which determines the dependence of the process on its previous value (Mills, 1991).
Recall from (2) that the observational data are d(t) = uθ∗(t) + η(t), where uθ∗(t) comes from the
solution of (1) and η(t) is a correlated noise that evolves in time as

η(ti) := ρ η(ti−1) + ε(ti), i = 2, . . . , Nt, η(t1) ∼ N
(

0, σ
2

∆2
t

)
(8)

with |ρ| < 1. The term ε(ti) is independent from η(ti−1) and the process ε is a normally distributed
white noise. To reflect the model resolution ∆t in the level of variance in noise η, we prescribe
var(η) = σ2/∆2

t together with ρ. The variance of η is constant across time since the process is
stationary due to |ρ| < 1, meaning that the stationary distribution of the process is η(t) ∼ N

(
0, σ

2

∆2
t

)
for all t. Consequently, we derive1 ε(ti) ∼ N

(
0, σ

2

∆2
t
(1− ρ2)

)
.

In the following, when noisy data are used, the values of the parameter ρ and σ are varied
randomly across different samples of (2). We generate 100 independent samples of

ρ ∼ N (0.8, 0.052) and σ ∼ N (0.07, 0.012) (9)

in order to achieve a correlation ρ of 0.65–0.95 and a ∆t-independent noise level of 4–10% via σ,
respectively. For each value of the pair (ρ, σ), independent replicates of the process η following (8)
are generated and added to training and/or testing data.

1. Note that it is more common to prescribe var(ε) together with ρ first and then derive var(η); however, we proceed in
the reverse order because we are foremost interested in defining the effective variance of η.

11

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Figure 2: Predictions of parameters θ0 (left column) and θ1 (right column) from noise-free and
noisy observational data, using a dense NN (4 layers, nu = 32) and N = 1000 training
samples. Top row: training and testing data noise-free; Middle row: training data noise-
free and testing data with noise; Bottom row: training and testing data with noise. Dashed
orange line depicts perfect predictions.

Figure 3: Predictions of parameters θ0 (left column) and θ1 (right column) from noise-free and
noisy observational data, using a CNN (nf × [1, 2, 4], nf = 8) and N = 1000 training
samples. Top row: training and testing data noise-free; Middle row: training data noise-
free and testing data with noise; Bottom row: training and testing data with noise. Dashed
orange line depicts perfect predictions.

12

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Table 9: Median-APE (R2) of model parameter
predictions with noisy observational
data, using a dense NN with 4 layers,
nu = 32.

N
train noise-free
test noise-free

train noise-free
test with noise

train with noise
test with noise

500 0.043 (0.960) 0.098 (0.914) 0.105 (0.879)
1000 0.021 (0.978) 0.103 (0.918) 0.082 (0.921)
4000 0.014 (0.993) 0.089 (0.927) 0.061 (0.961)
8000 0.021 (0.992) 0.098 (0.921) 0.062 (0.968)

Table 10: Median-APE (R2) of model param-
eter predictions with noisy observa-
tional data, using a CNN with nf ×
[1, 2, 4], nf = 8.

N
train noise-free
test noise-free

train noise-free
test with noise

train with noise
test with noise

500 0.023 (0.990) 0.169 (0.788) 0.098 (0.921)
1000 0.014 (0.995) 0.174 (0.763) 0.096 (0.938)
4000 0.014 (0.997) 0.204 (0.710) 0.060 (0.970)
8000 0.014 (0.998) 0.251 (0.617) 0.053 (0.976)

Model parameter predictions with noise More relevant in practice are model parameter es-
timates in the presence of noise in observational data. Using one dense NN and one CNN, we
demonstrate the effects of the additive noise stemming from the model described above on predic-
tive skills. For these experiments, we use a dense NN with four layers and nu = 32 units per layer,
and the CNN has 3 convolutional layers with nf × [1, 2, 4], nf = 8 and 2 dense layers. Tables 9
and 10 show the prediction errors for the dense NN and CNN, respectively. Three columns in each
table represent different noise configurations: both training and testing data do not contain noise
(second column); only testing data contain noise (third column); and both training and testing data
contain noise (fourth column). The tables additionally demonstrate the effects of using smaller and
larger amounts of training data, denoted by N (first column), indicating in most cases improved
predictive skills with increasing training sets. Throughout all experiments, the testing data of size
M = 2000 are kept fixed to allow for fair comparisons.

For both networks, Tables 9 and 10 show the lowest prediction errors for noise-free training
and testing data, whereas the highest prediction errors occur when the training data do not contain
noise but the test data do have noise. For CNNs, predictions with noise in testing data improve
significantly if the training data are also noisy (Table 10, last column). These results show the
importance of training CNNs with noisy data in practice, even if noise-free simulated model outputs
are available, because data from experiments or measurements are very likely polluted by some
amount of noise. Comparing the two network architectures, dense NN and CNN, the CNN delivers
lower prediction errors in most cases except when the training of the CNN is performed with noise-
free data while testing data have noise. Only in this case, the dense NN demonstrates significantly
better prediction skills (dense NN has R2 > 0.92 vs. CNN has R2 < 0.90) and therefore shows that
dense layers are less sensitive to the presence or absence of noise in the training data.

We complete the discussion about prediction errors in the presence of observational noise by
presenting scatterplots in Figures 2 and 3 describing the distribution of errors for varying values of
model parameters θ0 and θ1. Each graph in the figures shows the true value of θ0 or θ1 from the test
data set on the horizontal axis and the corresponding predicted value on the vertical axis. Deviations
of the predictions (blue dots) from the ideal (orange line) show the prediction errors. The figures
support the summarized statistics in Tables 9 and 10 discussed above and additionally show that the
spread of prediction errors is largely uniform across values of θ0 and θ1. Slightly larger errors can
appear at the lower and upper bounds of θ0 and θ1; these are more pronounced for the dense NN
than for the CNN.

13

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

tr
ai

n
no

is
e-

fr
ee

te
st

no
is

e-
fr

ee
tr

ai
n

no
is

e-
fr

ee
te

st
w

ith
no

is
e

tr
ai

n
w

ith
no

is
e

te
st

w
ith

no
is

e
Time series error:
Sq. bias = 2.8× 10−6

C-MSE = 0.061

Time series error:
Sq. bias = 1.8× 10−3

C-MSE = 2.001

Time series error:
Sq. bias = 1.2× 10−3

C-MSE = 0.536

Figure 4: Simulations of FitzHugh–Nagumo model (blue lines) using parameters from CNN pre-
dictions; corresponding data that gave rise to prediction are shown as orange dots. Each
graph shows the median percentile of MSE for the following cases. Top: training and test-
ing data noise-free; Middle: training data noise-free and testing data with noise; Bottom:
training and testing data with noise.

Simulations of FitzHugh–Nagumo model from predicted parameters We extend the evalu-
ation of results on model parameter predictions and now evaluate simulations of the FitzHugh–
Nagumo model (1) with predicted parameters. The results presented here show the errors of the
neural network predictions propagated through the forward problem. We focus on the CNN with
nf × [1, 2, 4], nf = 8, and we consider the same three different cases of presence and/or absence
of noise as before. Figure 4 shows three FitzHugh–Nagumo simulations, in which the top graph
represents the case where both training and testing data do not contain noise; in the middle graph
only testing data contain noise; and the bottom graph shows results where both training and testing
data contain noise. Each of the three graphs is selected from the testing data set as the median of the
MSE between true and predicted parameters. More detailed results for FitzHugh–Nagumo simula-
tions from predicted parameters are given in Appendix C, where we show results for the 10th, 25th,
75th, and 90th percentiles of MSE between simulated and testing time series.

We observe a nearly optimal overlapping of simulated output from predicted parameters and
test data corresponding to “true” parameters for the noise-free case (Figure 4, top). When noise is
added to training or testing data, the simulated time series’ show shifted spikes, which become more
pronounced as simulation time increases (100–200 milliseconds). The shifting of spikes over time
represents discrepancies with respect to the frequency of a periodic time series. This effect is more
pronounced when the training data is noise free (Figure 4, middle) and only mildly visible when
the training data has noise (Figure 4, bottom). Overall, the results here and in Appendix C quantify
the accuracy and reliability of the proposed estimation in order to generate realistic solutions of the
FitzHugh–Nagumo model from estimated parameters with convolutional networks.

14

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Table 11: Median-APE (R2) of joint parameter predictions of the ODE and noise parameters, using
a CNN with nf × [1, 2, 4], nf = 8. Providing Fourier spectrum to network becomes
crucial when inferring noise parameters, yielding best results for time & Fourier data.

N Data type FitzHugh–Nagumo parameter Noise parameter
θ0 θ1 σ ρ

Time 0.126 (0.897) 0.230 (0.778) 0.110 (−0.76) 0.064 (−0.79)
500 Fourier 0.258 (0.449) 0.349 (0.519) 0.071 (0.416) 0.032 (0.539)

Time & Fourier 0.103 (0.921) 0.209 (0.793) 0.063 (0.549) 0.030 (0.606)

Time 0.115 (0.914) 0.213 (0.812) 0.113 (−0.62) 0.063 (−0.80)
1000 Fourier 0.243 (0.460) 0.315 (0.577) 0.064 (0.524) 0.028 (0.603)

Time & Fourier 0.103 (0.935) 0.192 (0.856) 0.058 (0.589) 0.028 (0.645)

Time 0.089 (0.949) 0.168 (0.907) 0.068 (0.464) 0.050 (−0.15)
4000 Fourier 0.230 (0.517) 0.259 (0.748) 0.056 (0.611) 0.027 (0.653)

Time & Fourier 0.076 (0.962) 0.136 (0.916) 0.053 (0.657) 0.026 (0.700)

Time 0.070 (0.962) 0.138 (0.933) 0.058 (0.627) 0.030 (0.557)
8000 Fourier 0.162 (0.580) 0.215 (0.797) 0.051 (0.669) 0.023 (0.721)

Time & Fourier 0.066 (0.968) 0.110 (0.942) 0.050 (0.684) 0.024 (0.722)

3.5. Joint estimation of FitzHugh–Nagumo parameters and noise parameters

In addition to inferring parameters of the FitzHugh–Nagumo ODE, we are also interested in in-
ferring properties of the noise contained in a time series. Therefore, we target the simultaneous
estimation of model and noise parameters with a single NN in this section. This means that we
extend the output space of the NN-based reconstruction map from two model-parameters (θ0, θ1)
to four parameters (θ0, θ1, σ, ρ), where σ is the noise standard deviation and ρ is the autocorrelation
parameter of the noise model (8). Such a joint estimation of parameters of (deterministic) physi-
cal models based on differential equations and, simultaneously, of parameters of statistical models
is challenging because of the extremely different time scales in the physical vs. noise stochastic
processes. Due to these difficulties, joint parameter estimation governed by physical and statistical
models are rarely attempted in the literature.

We utilize the framework for computationally learning reconstruction maps described in Sec-
tion 2. Our framework requires samples for training and testing from a prior distribution; therefore
we augment the prior for ODE model parameters θ0, θ1 from Equation (4) with the prior informa-
tion (9) for the noise parameters σ, ρ. In order to address the extreme range of time scales between
ODE and noise models, we employ the Fourier transform of a noisy time series. This yields three
different types of observational data that can be used to train a network and perform predictions: a
time series, a Fourier spectrum, and a time series combined with its Fourier spectrum. We consider
the three data types as well as different sizes of training data sets in our numerical experiments for
joint ODE and noise parameter estimation.

In practice, it is necessary to preprocess the different types of data with scaling transformations
in order to rescale time series and Fourier transforms as well as the ODE and noise parameters; this
can be carried out with standard libraries (e.g., scikit-learn). The results are presented in Table 11
for a CNN consisting of 3 convolutional layers with nf × [1, 2, 4], nf = 8 followed by 2 dense
layers. The crucial role of the Fourier spectrum in order to estimate noise parameters is clearly

15

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

demonstrated by negative R2 values where only time series data is provided to the CNN. If spec-
trum data is omitted, very large amounts of training data are necessary (N = 8000 in this case)
in order to achieve a merely non-negative R2 for σ, ρ. On the other hand, the Fourier spectrum by
itself yields significantly larger errors for ODE parameters compared with time series data. As a
consequence, the best prediction performance for all four parameters is achieved when the CNN is
trained with both a time series and the corresponding Fourier spectrum. Overall, our framework
for computationally learning NN-based reconstruction maps has demonstrated accurate predictions
of model parameters, the reconstruction maps are able to handle noisy data very well, and previ-
ously challenging or even infeasible inference results become within reach as shown for the joint
estimation of ODE and noise parameters.

4. Conclusion

In this paper, we build an estimation framework for an inverse problem governed by an ODE, the
FitzHugh–Nagumo model. The estimation consists of recovering model parameters as a prediction
output from neural networks that are trained on time series solutions of the model as input. Our
study shows the efficacy of neural network-based parameter recovery when traditional optimization
techniques would fail to minimize the misfit function of the problem. In particular, we propose and
compare a range of different architectures of dense and convolutional NNs in order to computation-
ally learn reconstruction maps of the inverse problem in different situations (ideal train and test data,
noisy train and test data, and noisy test data only). Prediction quality is carefully assessed through
different statistical evaluation metrics and through the assessment of the FitzHugh–Nagumo model
solutions calculated for the predicted model parameters.

CNN architectures mostly show the lowest errors when recovering parameters, which can be
attributed to their locally acting kernels being advantageous for time-evolving data. Additionally,
CNNs extract crucial properties or dynamics of the ODE output when predicting parameters from
arbitrarily chosen partial observations; dense NNs, in contrast, perform significantly worse. In only
one case can dense networks achieve better results than CNNs, which is when training is performed
with noise-free data whereas prediction data are polluted with noise. Thus, dense NNs demonstrate
better generalization properties to testing data with “unseen” noise levels. Our NN-based parameter
estimation framework can generalize to other time dependent processes, because we successfully
carry out a joint estimation of parameters from an ODE model and an autocorrelated noise model.

Future directions include embedding uncertainty quantification methods in NN-based parameter
estimations. Uncertainty can be considered with respect to model and data discrepancies but also
with respect to network architecture and trained NN parameters. Some recent studies focus on
loss functions and propose statistical losses that incorporate additional information about the data,
such as an correlation structure (Constantinescu et al., 2020). A different approach is to propose
NN architectures for automatically selecting loss functions. Åkesson et al. (2020) shows that loss
functions for temporal statistical processes computed from a NN can effectively be used for inferring
parameters within an ABC framework. The present work makes use only of the mean squared error
as a loss; therefore, one can explore the incorporation of prior information and a description of
uncertainty in order to approximate posteriors of the inverse problem. Our reconstruction maps
rely on training data generation by solving the forward problem numerous times. To mitigate this
computational cost, one can explore reduced order model techniques, which recently have been
advanced through machine learning methods (Qian et al., 2020; O’Leary-Roseberry et al., 2020).

16

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Acknowledgments

The effort of Johann Rudi is based in part upon work supported by the U.S. Department of Energy,
Office of Science, under contract DE-AC02-06CH11357. The effort of Amanda Lenzi and Julie
Bessac is based in part on work supported by the U.S. Department of Energy, Office of Science, Of-
fice of Advanced Scientific Computing Research (ASCR), under contract DE-AC02-06CH11347.

References

Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep neural net-
works. Inverse Problems, 33(12):124007, 2017. doi: 10.1088/1361-6420/aa9581.

Mattias Åkesson, Prashant Singh, Fredrik Wrede, and Andreas Hellander. Convolutional neu-
ral networks as summary statistics for approximate Bayesian computation. arXiv preprint
arXiv:2001.11760, 2020.

Leandro M Alonso and Eve Marder. Visualization of currents in neural models with similar behavior
and different conductance densities. eLife, 8:e42722, 2019. doi: 10.7554/eLife.42722.

Andrea Arnold and Alun L Lloyd. An approach to periodic, time-varying parameter estimation
using nonlinear filtering. Inverse Problems, 34(10):105005, 2018. doi: 10.1088/1361-6420/
aad3e0.

Benjamin Ballnus, Sabine Hug, Kathrin Hatz, Linus Görlitz, Jan Hasenauer, and Fabian J Theis.
Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems.
BMC Systems Biology, 11(64), 2017. doi: 10.1186/s12918-017-0433-1.

Laure Buhry, Sylvain Saighi, Audrey Giremus, Eric Grivel, and Sylvie Renaud. Parameter esti-
mation of the Hodgkin–Huxley model using metaheuristics: application to neuromimetic analog
integrated circuits. In 2008 IEEE Biomedical Circuits and Systems Conference, pages 173–176.
IEEE, 2008. doi: 10.1109/BIOCAS.2008.4696902.

Daniela Calvetti and Erkki Somersalo. Introduction to Bayesian Scientific Computing: Ten Lec-
tures on Subjective Computing, volume 2 of Surveys and Tutorials in the Applied Mathematical
Sciences. Springer-Verlag New York, 2007. doi: 10.1007/978-0-387-73394-4.

Ki H Chon and Richard J Cohen. Linear and nonlinear ARMA model parameter estimation using
an artificial neural network. IEEE transactions on biomedical engineering, 44(3):168–174, 1997.

Emil M Constantinescu, Noémi Petra, Julie Bessac, and Cosmin G Petra. Statistical treatment
of inverse problems constrained by differential equations-based models with stochastic terms.
SIAM/ASA Journal on Uncertainty Quantification, 8(1):170–197, 2020.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020. doi: 10.1073/
pnas.1912789117.

Michael Creel. Neural nets for indirect inference. Econometrics and Statistics, 2:36–49, 2017.

17

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Noel Cressie and Christopher K Wikle. Statistics for spatio-temporal data. John Wiley & Sons,
2015.

Aidan C Daly, David J Gavaghan, Chris Holmes, and Jonathan Cooper. Hodgkin–Huxley re-
visited: reparametrization and identifiability analysis of the classic action potential model
with approximate Bayesian methods. Royal Society open science, 2(12):150499, 2015. doi:
10.1098/rsos.150499.

Aidan C Daly, David Gavaghan, Jonathan Cooper, and Simon Tavener. Inference-based assess-
ment of parameter identifiability in nonlinear biological models. Journal of The Royal Society
Interface, 15(144):20180318, 2018. doi: 10.1098/rsif.2018.0318.

Bin Deng, Jiang Wang, and Yenqiu Che. A combined method to estimate parameters of neuron from
a heavily noise-corrupted time series of active potential. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 19(1):015105, 2009. doi: 10.1063/1.3092907.

Shinji Doi, Yuichi Onoda, and Sadatoshi Kumagai. Parameter estimation of various Hodgkin–
Huxley-type neuronal models using a gradient-descent learning method. In Proceedings of the
41st SICE Annual Conference. SICE 2002., volume 3, pages 1685–1688. IEEE, 2002. doi: 10.
1109/SICE.2002.1196569.

Resat Ozgur Doruk and Laila Abosharb. Estimating the parameters of FitzHugh–Nagumo neurons
from neural spiking data. Brain Sciences, 9(12):364, 2019. doi: 10.3390/brainsci9120364.

Vivek Dua. An artificial neural network approximation based decomposition approach for parameter
estimation of system of ordinary differential equations. Computers & chemical engineering, 35
(3):545–553, 2011.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018. doi: 10.
1016/j.neunet.2017.12.012.

Yuwei Fan, Cindy Orozco Bohorquez, and Lexing Ying. BCR-Net: A neural network based on the
nonstandard wavelet form. Journal of Computational Physics, 384:1–15, 2019. doi: 10.1016/j.
jcp.2019.02.002.

Richard FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical Journal, 1(6):445–466, 1961.

Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal,
Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels,
David S Greenberg, and Jakob H Macke. Training deep neural density estimators to identify
mechanistic models of neural dynamics. eLife, 9:e56261, 2020. doi: 10.7554/eLife.56261.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christopher R Myers, and
James P Sethna. Universally sloppy parameter sensitivities in systems biology models. PLOS
Computational Biology, 3(10):e189, 2007. doi: 10.1371/journal.pcbi.0030189.

18

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Franz Hamilton, Tyrus Berry, and Timothy Sauer. Tracking intracellular dynamics through extra-
cellular measurements. PloS one, 13(10):e0205031, 2018. doi: 10.1371/journal.pone.0205031.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the selection of initialization and acti-
vation function for deep neural networks. arXiv preprint arXiv:1805.08266, 2018.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500–544,
1952.

Bai Jiang, Tung-yu Wu, Charles Zheng, and Wing H. Wong. Learning summary statistic for ap-
proximate Bayesian computation via deep neural network. Statistica Sinica, pages 1595–1618,
2017.

Renaud Jolivet, Alexander Rauch, Hans-Rudolf Lüscher, and Wulfram Gerstner. Predicting spike
timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational
Neuroscience, 21(1):35–49, 2006. doi: 10.1007/s10827-006-7074-5.

Jari Kaipio and Erkki Somersalo. Statistical and Computational Inverse Problems, volume 160 of
Applied Mathematical Sciences. Springer-Verlag New York, 2005. doi: 10.1007/b138659.

Yuehaw Khoo and Lexing Ying. SwitchNet: A neural network model for forward and inverse
scattering problems. SIAM Journal on Scientific Computing, 41(5):A3182–A3201, 2019. doi:
10.1137/18M1222399.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference for Learning Representation, 2015.

Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, 1995.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems, volume 25,
pages 1097–1105. Curran Associates, Inc., 2012.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-
based learning. In Shape, contour and grouping in computer vision, pages 319–345. Springer,
1999.

Terence C Mills. Time Series Techniques for Economists. Cambridge University Press, 1991.

Jahangir Morshed and Jagath J. Kaluarachchi. Parameter estimation using artificial neural network
and genetic algorithm for free-product migration and recovery. Water Resources Research, 34(5):
1101–1113, 1998.

Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. An active pulse transmission line simulat-
ing nerve axon. Proceedings of the IRE, 50(10):2061–2070, 1962.

Richard Naud, Brice Bathellier, and Wulfram Gerstner. Spike-timing prediction in cortical neurons
with active dendrites. Frontiers in Computational Neuroscience, 8:90, 2014. doi: 10.3389/fncom.
2014.00090.

19

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Thomas O’Leary-Roseberry, Umberto Villa, Peng Chen, and Omar Ghattas. Derivative-informed
projected neural networks for high-dimensional parametric maps governed by PDEs. arXiv
preprint arXiv:2011.15110, 2020.

Stefano Pagani, Andrea Manzoni, and Alfio Quarteroni. Efficient state/parameter estimation in
nonlinear unsteady PDEs by a reduced basis ensemble Kalman filter. SIAM/ASA Journal on
Uncertainty Quantification, 5(1):890–921, 2017. doi: 10.1137/16M1078598.

Jaimit Parikh, James Kozloski, and Viatcheslav Gurev. Integration of AI and mechanistic
modeling in generative adversarial networks for stochastic inverse problems. arXiv preprint
arXiv:2009.08267, 2020.

Astrid A Prinz, Dirk Bucher, and Eve Marder. Similar network activity from disparate circuit
parameters. Nature Neuroscience, 7(12):1345–1352, 2004. doi: 0.1038/nn1352.

Elizabeth Qian, Boris Kramer, Benjamin Peherstorfer, and Karen Willcox. Lift & learn: Physics-
informed machine learning for large-scale nonlinear dynamical systems. Physica D: Nonlinear
Phenomena, 406:132401, 2020. doi: https://doi.org/10.1016/j.physd.2020.132401.

Stefan T. Radev, Ulf K. Mertens, Andreass Voss, Lynton Ardizzone, and Ullrich Köthe.
BayesFlow: Learning complex stochastic models with invertible neural networks. arXiv preprint
arXiv:2003.06281, 2020.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Andrew M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451–559, 2010.
doi: 10.1017/S0962492910000061.

Albert Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM,
Philadelphia, PA, 2005.

Karl E Taylor. Summarizing multiple aspects of model performance in a single diagram. Journal
of Geophysical Research: Atmospheres, 106(D7):7183–7192, 2001.

Werner Van Geit, Erik De Schutter, and Pablo Achard. Automated neuron model optimization tech-
niques: a review. Biological Cybernetics, 99:241–251, 2008. doi: 10.1007/s00422-008-0257-6.

Appendix A. Influence of parameters on FitzHugh–Nagumo model solutions and
distribution of parameter samples

This section provides background information on how the inference parameters θ := (θ0, θ1) affect
solutions of the FitzHugh–Nagumo ODE and thus the observational data that is used to generate
the NN-based reconstruction maps. Furthermore, the section discusses the distribution of parameter
samples that are used to train the networks and test their predictions.

20

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Influence of parameters on FitzHugh–Nagumo model solutions The choice of parameters θ :=
(θ0, θ1) for inference from the FitzHugh–Nagumo model is motivated by how θ influences solutions
of the ODE (1), specifically the membrane potential u(t). Two important characteristics of the
oscillating membrane potential are the spike rate and spike duration. Therefore, we visualize these
quantities in Figure 5. In order to detect a spike of u(t), we consider a value called spike threshold
uspike, which is a constant that determines the occurrence of a spike at time tspike, if uspike ≤ u(tspike)
and uspike > u(tspike − ε) for some ε > 0. The spike duration is defined as the time from tspike until
uspike > u(t) for t > tspike. To generate the plots in Figure 5, we calculate the spike rate (i.e.,
number of spikes divided by time series length), which is depicted left in Figure 5, and take the
average duration over all spike durations to obtain the right plot in Figure 5. We observe in this
figure that both the spike rate and the duration are controlled by θ0 and θ1 in nonlinear ways, and
that the dependencies of spike rate and duration on the parameters are distinct from one another.
Additionally, we observe that some combinations of parameters generate zero or only one spike
(flat purple, yellow, and white triangular regions in Figure 5). The NN-based reconstruction maps,
however, have shown to predict parameters even from these more challenging time series.

Distribution of parameter samples for training and testing of neural networks Training and
testing data for NNs are obtained from, first, sampling parameters θ from their prior distributions
(4) and discarding samples outside of prior bounds (5) and, second, solving ODE (1) and storing
the membrane potential uθ. Figure 6 presents the distribution of prior samples to illustrate how
close training and testing samples of θ are to one another. The testing samples of size M = 2000
are displayed as blue dots and are fixed in all four plots. Fixing the testing samples ensures that
the evaluation of prediction errors is comparable across all numerical experiments. The training
samples are varied in size N = 500, 1000, 4000, 8000 and are shown as black dots in Figure 6
(clockwise from top left scatter plot). The configurations with N = 500, 1000 training samples
are further apart from each other, hence permitting blue dotted testing samples to be distinct from
training sets. The configurations with N = 4000, 8000, on the other hand, exhibit dense training
sets and cover most of the parameter space.

Appendix B. K-fold cross-validation of selected neural network architectures and
their sensitivity to the initialization of weights

We assess further the quality of the selected NN along with the effects of different initial initializa-
tions of the weights in fitted dense NNs and CNNs using a k-fold cross-validation, with k = 6. After
splitting the data set into six roughly equal-sized parts, the NNs are fit to five splits concatenated into
a single training set and evaluation metrics are calculated when predicting the remaining sixth part
of the data. We repeat this procedure to each of the six data splits, and a final mean and standard de-
viation of the prediction error are obtained by combining the estimates from the six splits that have
been left out from training sets. A 5- to 10-fold cross-validation is typically recommended (Kohavi
et al., 1995), and we find that six folds provide a good compromise between bias and variance for
our case study.

Tables 12 and 13 show the mean and standard deviation from the 6-fold cross-validation of the
prediction skill scores outlined in Section 2.3. Each row of a table corresponds to a different seed
when initializing the weights of the dense NNs and CNNs. We notice that the random seeds have
little effect on the predictions, indicating that the method is robust to the randomness incurred in the
fit of the networks. Moreover, the lower scores from the CNN (Table 13) compared to the dense NN

21

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Figure 5: Left: Spike rate of the membrane potential u(t) stemming from solutions of the
FitzHugh–Nagumo ODE for varying parameters θ0 and θ1, which are on the horizon-
tal and vertical axes, respectively. Right: Average duration of spikes of the membrane
potential. The triangular region on the top right in both plots (white color in left, magenta
color in right plot) has only a single spike and u(t) stays flat above the spike threshold of
1.5. The triangular region on the top left (white color in both plots), on the other hand,
has zero spikes.

Figure 6: Model parameters of testing set (blue dots) stay fixed (M = 2000) while the size of the
training set (black dots) increases (N = 500, 1000, 4000, 8000), clockwise from the top
left scatter plot.

22

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Table 12: 6-fold cross-validation with (noise-free) training and testing sets of sizes N = 1000 and
M = 200, respectively; random seeds for initializing network weights vary per row;
using a dense NN with 4 layers, nu = 32.

Random seed Squared bias C-MSE Median-APE R2

mean std. mean std. mean std. mean std.

seed #1 6.04× 10−5 5.45× 10−5 2.95× 10−3 1.13× 10−3 0.0350 0.0081 0.970 0.0105
seed #2 5.61× 10−5 6.28× 10−5 2.45× 10−3 9.87× 10−4 0.0269 0.0104 0.976 0.0080
seed #3 3.78× 10−5 2.40× 10−5 2.40× 10−3 8.88× 10−4 0.0263 0.0063 0.976 0.0075
seed #4 8.11× 10−5 5.81× 10−5 2.72× 10−3 1.25× 10−3 0.0281 0.0046 0.973 0.0101
seed #5 5.34× 10−5 4.32× 10−5 2.31× 10−3 4.98× 10−4 0.0282 0.0055 0.977 0.0042
seed #6 9.76× 10−5 1.49× 10−4 2.35× 10−3 6.27× 10−4 0.0314 0.0047 0.976 0.0053
seed #7 5.55× 10−5 7.30× 10−5 2.35× 10−3 8.62× 10−4 0.0271 0.0069 0.977 0.0066
seed #8 9.44× 10−5 7.91× 10−5 2.52× 10−3 6.28× 10−4 0.0329 0.0102 0.974 0.0047
seed #9 3.81× 10−5 4.21× 10−5 2.17× 10−3 7.98× 10−4 0.0269 0.0053 0.978 0.0063
seed #10 5.09× 10−5 4.53× 10−5 2.49× 10−3 6.41× 10−4 0.0295 0.0059 0.975 0.0037

Table 13: 6-fold cross-validation with (noise-free) training and testing sets of sizes N = 1000 and
M = 200, respectively; random seeds for initializing network weights vary per row;
using a CNN with nf × [1, 2, 4], nf = 8.

Random seed Squared bias C-MSE Median-APE R2

mean std. mean std. mean std. mean std.

seed #1 3.05× 10−5 3.05× 10−5 5.40× 10−4 3.02× 10−4 0.0181 0.0038 0.994 0.0032
seed #2 3.59× 10−5 4.00× 10−5 4.88× 10−4 2.60× 10−4 0.0166 0.0078 0.994 0.0034
seed #3 2.87× 10−5 3.59× 10−5 4.48× 10−4 2.50× 10−4 0.0131 0.0065 0.995 0.0029
seed #4 5.43× 10−5 4.10× 10−5 4.60× 10−4 2.11× 10−4 0.0176 0.0054 0.994 0.0025
seed #5 3.60× 10−5 3.58× 10−5 5.40× 10−4 3.21× 10−4 0.0191 0.0036 0.994 0.0036
seed #6 2.24× 10−5 2.74× 10−5 5.01× 10−4 2.77× 10−4 0.0169 0.0066 0.994 0.0034
seed #7 4.77× 10−5 3.85× 10−5 4.92× 10−4 2.77× 10−4 0.0167 0.0047 0.994 0.0034
seed #8 2.83× 10−5 2.71× 10−5 5.12× 10−4 1.77× 10−4 0.0140 0.0058 0.994 0.0022
seed #9 1.13× 10−5 9.92× 10−6 4.47× 10−4 2.67× 10−4 0.0961 0.0035 0.995 0.0032
seed #10 2.34× 10−5 1.35× 10−5 4.84× 10−4 2.62× 10−4 0.0186 0.0062 0.994 0.0031

(Table 12) substances the conclusions in Section 3.2 that the CNN results in better predictions than
the dense NN.

Appendix C. Extended results for simulation of FitzHugh–Nagumo model from
predicted parameters

We support the observations from the last paragraph of Section 3.4 here by showing a wider scope
of prediction errors. Recall that Section 3.4 considers the evaluation of parameter prediction errors
from neural networks by means of comparing simulations of the FitzHugh–Nagumo model from
predicted parameters with the time series used as input to the NN. The predictions are carried out
by the CNN selected in Section 3.2 with nf × [1, 2, 4], nf = 8.

We show the following three Figures. Figure 7 represents the case where both training and
testing data do not contain noise; in Figure 8 only testing data contain noise; and Figure 9 shows

23

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

results where both training and testing data contain noise. Each figure contains five graphs where
each graph is selected from the testing data set (of sizeM = 2000) as a specific quantile of the MSE,
in order to show the effects of a range of prediction accuracies on the FitzHugh–Nagumo model
solutions. We present the 10th, 25th, 50th (i.e., median), 75th, and 90th percentiles of MSE between
simulated and testing time series’. In Figure 7, we observe a nearly optimal overlapping of simulated
output and test data for the noise-free case, even for the 90th percentile of MSE. When noise is
added to training or testing data (Figures 8 and 9), the simulated time series show shifted spiking
frequencies, which become increasingly pronounced for the median, 75th, and 90th percentiles. By
comparing the predicted θ = (θ0, θ1) with the corresponding test values (given in graph labels
in Figure 8), we observe that the prediction accuracy for θ1 degrades with increasing percentile.
This can imply that a larger contribution to discrepancies of the simulated ODE output stems from
inaccurate predictions of parameter θ1. Overall, the better correspondence of the time series’ in
Figure 9 compared with Figure 8 demonstrates the significant benefit of using noisy training data as
it is done in the former figure. This observation supports the results in Section 3.4.

24

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Figure 7: Simulations of FitzHugh–Nagumo model (blue lines) using parameters from CNN predic-
tions; corresponding data that gave rise to prediction are shown as orange dots. Training
samples (N = 1000) and testing samples (M = 2000) are both noise-free. Graphs from
top to bottom show increasing quantiles of MSE between true and estimated time series.

25

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Figure 8: Simulations of FitzHugh–Nagumo model (blue lines) using parameters from CNN predic-
tions; corresponding data that gave rise to prediction are shown as orange dots. Training
samples (N = 1000) are noise-free but testing data (M = 2000) contains noise. Graphs
from top to bottom show increasing quantiles of MSE between true and estimated time
series.

26

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Figure 9: Simulations of FitzHugh–Nagumo model (blue lines) using parameters from CNN predic-
tions; corresponding data that gave rise to prediction are shown as orange dots. Training
samples (N = 1000) and testing samples (M = 2000) both contain noise. Graphs from
top to bottom show increasing quantiles of MSE between true and estimated time series.

27

PARAMETER ESTIMATION WITH DENSE AND CONVOLUTIONAL NEURAL NETWORKS

Government License: The submitted manuscript has
been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science laboratory,
is operated under Contract No. DE-AC02-06CH11347.
The U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and per-
form publicly and display publicly, by or on behalf of
the Government. The Department of Energy will provide
public access to these results of federally sponsored re-
search in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan

28

	Introduction
	Neural network-based reconstruction maps for inverse problems
	Forward and inverse modeling of spiking neurons
	Deep neural networks for inverse problems
	Evaluation metrics for inference results

	Numerical experiments
	Experimental setup
	Exploration of neural network architectures
	Learning capabilities of neural networks for partially observed time series
	Parameter estimation in the presence of noise in observational data
	Joint estimation of FitzHugh–Nagumo parameters and noise parameters

	Conclusion
	Influence of parameters on FitzHugh–Nagumo model solutions and distribution of parameter samples
	K-fold cross-validation of selected neural network architectures and their sensitivity to the initialization of weights
	Extended results for simulation of FitzHugh–Nagumo model from predicted parameters

