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Abstract
Models for learning probability distributions such as generative models and density estimators be-
have quite differently from models for learning functions. One example is found in the memo-
rization phenomenon, namely the ultimate convergence to the empirical distribution, that occurs
in generative adversarial networks (GANs). For this reason, the issue of generalization is more
subtle than that for supervised learning. For the bias potential model, we show that dimension-
independent generalization accuracy is achievable if early stopping is adopted, despite that in the
long term, the model either memorizes the samples or diverges.
Keywords: probability distribution, machine learning, generalization error, curse of dimensional-
ity, early stopping.

1. Introduction

Distribution learning models such as GANs have achieved immense popularity from their empirical
success in learning complex high-dimensional probability distributions, and they have found diverse
applications such as generating images (Brock et al., 2018) and paintings (Elgammal et al., 2017),
writing articles (Brown et al., 2020), composing music (Oord et al., 2016), editing photos (Bau
et al., 2019), designing new drugs (Prykhodko et al., 2019) and new materials (Mao et al., 2020),
generating spin configurations (Zhang et al., 2018) and modeling quantum gases (Casert et al.,
2020), to name a few.

As a mathematical problem, distribution learning is much less understood. Arguably, the most
fundamental question is the generalization ability of these models. One puzzling issue is the fol-
lowing.

0. Generalization vs. memorization:

Let Q∗ be the target distribution, and Q(n)
∗ be the empirical distribution associated with n

sample points. Let Q(f) be the probability distribution generated by some machine learning
model parametrized by the function f in some hypothesis space F . It has been argued, for
example in the case of GAN, that as training proceeds, one has (Goodfellow et al., 2014)

lim
t→∞

Q(f(t)) = Q
(n)
∗ (1)

where f(t) is the parameter we obtain at training step t. We refer to (1) as the “memorization
phenomenon”. When it happens, the model learned does not give us anything other than
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the samples we already have. This is in sharp contrast to supervised learning, where models
are typically trained till interpolation and can generalize well to unseen data both in practice
(Zhang et al., 2016) and in theory (E et al., 2019d).

Despite this, these distribution-learning models perform surprisingly well in practice, being able to
come close to the unseen target Q∗ and allowing us to generate new samples. This counterintuitive
result calls for a closer examination of their training dynamics, beyond the statement (1).

There are many other mysteries for distribution learning, and we list a few below.

1. Curse of dimensionality:

The superb performance of these models (e.g. on generating high-resolution, lifelike and di-
verse images (Brock et al., 2018; Donahue and Simonyan, 2019; Vahdat and Kautz, 2020))
indicates that they can approximate the target Q∗ with satisfactorily small error. Yet, in the-
ory, this should not be possible, because to estimate a general distribution in Rd with error
≤ ε, we need n = ε−Ω(d) amount of samples (discussed below), which becomes astronom-
ical for real-world tasks. For instance, the BigGAN (Brock et al., 2018) was trained on the
ILSVRC dataset (Russakovsky et al., 2015) with ≤ 107 images of resolution 512 × 512, but
the theoretical sample size should be like� 10512×512.

Of course, for restricted distribution families like the Gaussians, the sample complexity is
only n = poly(d). Yet, one is really interested in complex distributions such as the distribu-
tion of facial images that a priori do not belong to any known family, so these tasks require the
models to possess not only a dimension-independent sample complexity but also the universal
approximation property.

2. The fragility of the training process:

It is well-known that distribution-learning models like GANs and VAE (variational autoen-
coder) are difficult to train. They are especially vulnerable to issues like mode collapse (Che
et al., 2016; Salimans et al., 2016), instability and oscillation (Radford et al., 2015), and
vanishing gradient (Arjovsky and Bottou, 2017). The current treatment is to find by trial-and-
error a delicate combination of the right architectures and hyper-parameters (Radford et al.,
2015). The need to understand these issues calls for a mathematical treatment.

This paper offers a partial answer to these questions. We focus on the bias potential model, an
expressive distribution-learning model that is relatively transparent, and uncover the mechanisms
for its generalization ability.

Specifically, we establish a dimension-independent a priori generalization error estimate with
early-stopping. With appropriate function spaces f ∈ F , the training process consists of two
regimes:

• First, by implicit regularization, the training trajectoryQ(f(t)) comes very close to the unseen
target Q∗, and this is when early-stopping should be performed.

• Afterwards, Q(f(t)) either converges to the sample distribution Q(n)
∗ or it diverges.

This paper is structured as follows. In Section 2, we introduce the bias potential model and
pose it as a continuous calculus of variations problem. Section 3 analyzes the training behavior of
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this model and presents this paper’s main results on generalization error and memorization. Section
4 presents some numerical examples. Section A contains all the proofs. Section 5 concludes this
paper with remarks on future directions.

Notation: denote vectors by bold letters x. Let C(K) be the space of continuous functions over
some subset K ⊆ Rd equipped with supremum norm. Let P(K),Pac(K),P2(K) be the space
of probability measures over K, the subset of absolutely continuous measures, and the subset of
measures with finite second moments. Denote the support of a distribution Q ∈ P(K) by sprtQ.
Let W2 be the Wasserstein metric over P2(K).

1.1. Related works

• Generalization ability: Among distribution-learning models, GANs have attracted the most
attention and their generalization ability has been discussed in (Arora et al., 2017; Zhang et al.,
2017; Bai et al., 2019; Gulrajani et al., 2020) from the perspective of the neural network-
based distances. For trained models, dimension-independent generalization error estimates
have been obtained only for certain restricted models, such as GANs whose generators are
linear maps or one-layer networks (Wu et al., 2019; Lei et al., 2020; Feizi et al., 2020).

• Curse of dimensionality (CoD): If the sampling error is measured by the Wasserstein metric
W2, then for any absolutely continuous Q∗ and any δ > 0, it always holds that (Weed and
Bach, 2017)

W2(Q
(n)
∗ , Q∗) & n−

1
d−δ

To achieve an error of ε, the required sample size is n = ε−Ω(d).

If sampling error is measured by KL divergence, then KL(Q∗‖Q(n)
∗ ) =∞ since Q(n)

∗ is sin-
gular. If kernel smoothing is applied to Q(n)

∗ , it is known that the error scales like O(n−
4
d+4 )

(Wand and Jones, 1994) (technically the norm used in (Wand and Jones, 1994) is the L2 dif-
ference between densities, but one should expect that CoD would likewise be present for KL
divergence.)

• Continuous perspective: (E et al., 2019c, 2020) provide a framework to study supervised
learning as continuous calculus of variations problems, with emphasis on the role of the func-
tion representation, e.g. continuous neural networks (E et al., 2019b). In particular, the
function representation largely determines the trainability (Chizat and Bach, 2018; Rotskoff
and Vanden-Eijden, 2019) and generalization ability (E et al., 2018, 2019a,d) of a supervised
learning model. This framework can be applied to studying distribution learning in general,
and we use it to analyze the bias potential model.

• Exponential family:

The density function of the bias-potential model is an instance of the exponential families.
These distributions have long been applied to density estimation (Barron and Sheu, 1991;
Canu and Smola, 2006) with theoretical guarantees (Yuan et al., 2012; Sriperumbudur et al.,
2017). Yet, existing theories focus only on black-box estimators, instead of the training pro-
cess. It has also been popular to adopt a mixture of exponential distributions (Kiefer and
Wolfowitz, 1956; Jewell, 1982; Redner and Walker, 1984), but it will not be covered in this
paper.
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2. Bias Potential Model

This section introduces the bias potential model, a simple distribution-learning model proposed
by (Valsson and Parrinello, 2014; Bonati et al., 2019) and also known as “variationally enhanced
sampling”.

To pose a supervised-learning model as a calculus of variations problem, one needs to consider
four factors: function representation, training objective, training rule, and discretization (E et al.,
2019c). For distribution learning, there is the additional factor of distribution representation, namely
how probability distributions are represented through functions. These are general issues for any
distribution-learning model. For future reference, we go through these components in some detail.

2.1. Distribution representation

The bias potential model adopts the following representation:

Q =
1

Z
e−V P, Z = EP [e−V ] (2)

where V is some potential function and P is some base distribution. This representation commonly
appears in statistical mechanics as the Boltzmann distribution. It is suitable for density estimation,
and can also be applied to generative modeling via sampling techniques like rejection sampling,
MCMC, Langevin diffusion (Roberts and Tweedie, 1996), hit-and-run (Lovász and Vempala, 2007),
etc.

Typically the partition function Z can be ignored, since it is not involved in the training objec-
tives or most of the sampling algorithms.

2.2. Training objective

Since the representation (2) is defined by a density function, it is natural to define a density-based
training objective. Given a target distribution Q∗, one convenient choice is the backward KL diver-
gence

KL(Q∗‖Q) = EQ∗ [logQ∗ − logP ] + EQ∗ [V ] + logEP [e−V ]

An alternative way introduced in (Valsson and Parrinello, 2014) is to define the “biased distribution”

P∗ =
eVQ∗

EQ∗ [eV ]

so that Q = Q∗ iff P = P∗. Then, we can define an objective by the forward KL

KL(P‖P∗) = EP [logP − logQ∗]− EP [V ] + logEQ∗ [eV ]

Removing constant terms, we obtain the following objectives

L−(V ) := EQ∗ [V ] + logEP [e−V ]

L+(V ) := −EP [V ] + logEQ∗ [eV ]
(3)

Both objectives are convex in V (Lemma 14). Suppose Q∗ can be written as (2) with potential V∗,
then Q = Q∗ iff V = V∗ + c for some constant c iff L+(V ) or L−(V ) = 0, so we have a unique
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global minimizer up to constants. Otherwise, if Q∗ does not have the form (2), then the minimizer
does not exist.

In practice, when Q∗ is available only through its sample Q(n)
∗ , we simply substitute all the

expectation terms EQ∗ in (3) by E
Q

(n)
∗

.

2.3. Function representation

A good function representation (or function space F) should have two conflicting properties:

1. F is expressive so that distributions generated by f ∈ F satisfy universal approximation
property.

2. F has small complexity so that the generalization gap is small.

One approach is to adopt an integral transform-based representation (E et al., 2019c),

V (x) = Eρ(θ)

[
φ(x, θ)

]
for some feature function φ(·; θ) and parameter distribution ρ. Then, V can be approximated with
Monte-Carlo rate by

Vm(x) =
1

m

m∑
j=1

φ(x; θi) (4)

where {θj} are i.i.d. samples from ρ(θ).
Let us consider function representations built from neural networks:

• 2-layer neural networks: Define the continuous 2-layer network by

V (x) = Eρ(a,w,b)

[
a σ(w · x + b)

]
(5)

with an activation function σ : R → R and weights w ∈ Rd and a, b ∈ R. The natural
functional norm is the Barron norm (E et al., 2019b):

‖V ‖B := inf
ρ
‖ρ‖P , ‖ρ‖2P := Eρ(a,w,b)

[
a2(‖w‖2 + b2)

]
(6)

where ρ ranges over all parameter distributions that satisfy (5) and ‖ρ‖P is known as the path
norm.

• Random feature model: Rewrite (5) as

V (x) = Eρ0(w,b)

[
a(w, b) σ(w · x + b)

]
(7)

with fixed parameter distribution ρ0(w, b) and

a(w, b) :=
d
∫
a dρ(a,w, b)

d
∫
ρ(a,w, b)da

The natural functional norm is the RHKS (reproducing kernel Hilbert space) norm (E et al.,
2019b; Rahimi and Recht, 2008):

‖V ‖2H := Eρ0
[
a(w, b)2

]
= ‖a‖2L2(ρ0) (8)

It corresponds to the RKHSH induced by the kernel

k(x,x′) = Eρ0(w,b)[σ(w · x + b)σ(w · x′ + b)]
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It is straightforward to establish the universal approximation theorem for these two representa-
tions and we provide such results below: Denote by Pac(K) ∩ C(K) the distributions over K with
continuous density functions, and by ‖ · ‖TV the total variation distance, which is equivalent to the
L1 norm when restricted to Pac(Rd).

Proposition 1 (Universal approximation) LetK ⊆ Rd be any compact set with positive Lebesgue
measure, let P be the uniform distribution over K, and let V be any class of functions that is dense
in C(K). Then, the class of probability distributions (2) generated by V ∈ V and P are

• dense in P(K) under the Wasserstein metric Wp (1 ≤ p <∞),

• dense in Pac(K) under the total variation norm ‖ · ‖TV ,

• dense in Pac(K) ∩ C(K) under KL divergence.

Given assumption A.1, this result applies if V is the Barron space {‖V ‖B < ∞} or RKHS space
{‖V ‖H <∞}.

The Monte-Carlo approximation (4) suggests that these continuous models can be approximated
efficiently by finite neural networks. Specifically, we can establish the following a priori error
estimates:

Proposition 2 (Efficient approximation) Suppose that the base distributionP is compactly-supported
in a ball BR(0), and the activation function σ is Lipschitz with σ(0) = 0. Given ‖V ‖B < ∞, for
every m ∈ N, there exists a finite 2-layer network Vm with m neurons that satisfies:

KL(Q‖Qm) ≤ ‖V ‖B√
m
· 2
√

3‖σ‖Lip
√
R2 + 1

‖Vm‖B ≤
√

2‖V ‖B

where Qm is the distribution generated by Vm. Similarly, assume that the fixed parameter distribu-
tion ρ0 in (7) is compactly-supported in a ball Br(0), then given ‖V ‖H < ∞, for every m, there
exists Vm such that

KL(Q‖Qm) ≤ ‖V ‖H√
m
· 2
√

3‖σ‖Lip
√
R2 + 1 r

‖Vm‖H ≤
√

2‖V ‖H

2.4. Training rule

We consider the simplest training rule, the gradient flow.
For continuous function representations, there are generally two kinds of flows:

• Non-conservative gradient flow

For the random feature model (7), we can train the function a(w, b) using its variational
gradient

∂ta(w, b) = −δL
δa

(w, b)
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Specifically, for the training objectives L±(V ) in (3), the corresponding flows are defined by

d

dt
a = −δL

+

δa
= −EP∗−P [σ(w · x + b)]

d

dt
a = −δL

−

δa
= −EQ∗−Q[σ(w · x + b)]

• Conservative gradient flow:

For the 2-layer neural network (5), we train the parameter distribution ρ(a,w, b). Its gradient
flow is constrained by the conservation of local mass and obeys the continuity equation (in
the weak sense):

∂tρ−∇ ·
(
ρ∇δL

δρ

)
= 0 (9)

With the objectives (3), the gradient fields are given by

∇δL
+

δρ
= ∇(a,w,b)EP∗−P

[
a σ(w · x + b)

]
= EP∗−P

 σ(w · x + b)
a σ′(w · x + b) x
a σ′(w · x + b)


∇δL

−

δρ
= ∇(a,w,b)EQ∗−Q

[
a σ(w · x + b)

]
= EQ∗−Q

 σ(w · x + b)
a σ′(w · x + b) x
a σ′(w · x + b)

 (10)

2.5. Discretization

So far we have only discussed the continuous formulation of distribution learning models. In prac-
tice, we implement these continuous models using discretized versions, with the hope that the dis-
cretized models inherit these properties up to a controllable discretization error.

Let us focus on the discretization in the parameter space, and in particular, the most popular
“particle discretization”, since this is the analog of Monte-Carlo for dynamic problems. Consider
the parameter distribution ρ(a,w, b) of the 2-layer net (5) and its approximation by the empirical
distribution

ρ(m) =
1

m

m∑
j=1

δ(aj ,wj ,bj)

where the particles {(aj ,wj , bj)} are i.i.d. samples of ρ. The potential function represented by this
empirical distribution is given by:

Vm(x) = Eρ(m)

[
a σ(w · x + b)

]
=

1

m

∑
j

aj σ(wj · x + bj)

Suppose we train ρ(m) by conservative gradient flow (9,10) with the objective L−. The continuity
equation (9) implies that, for any smooth test function f(a,w, b), we have

d

dt

∫
f dρ(m) = −

∫
∇f · ∇δL

δρ
dρ(m) = − 1

m

m∑
j=1

∇f(aj ,wj , bj)
T · ∇δL

δρ
(aj ,wj , bj)
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Meanwhile, we also have

d

dt

∫
f dρ(m) =

1

m

m∑
j=1

∇f(aj ,wj , bj)
T · d

dt

ajwj

bj


Thus we have recovered the gradient flow for finite scaled 2-layer networks:

d

dt

ajwj

bj

 = −∇δL
−(Vm)

δρ
(aj ,wj , bj) = −m · ∂L−(Vm)

∂(aj ,wj , bj)
= −EQ∗−Q

 σ(wj · x + bj)
aj σ

′(wj · x + bj) x
aj σ

′(wj · x + bj)


This example shows that the particle discretization of continuous 2-layer networks (5) leads to the
same result as the mean-field modeling of 2-layer nets (Mei et al., 2018; Rotskoff and Vanden-
Eijden, 2019).

3. Training Dynamics

This section studies the training behavior of the bias potential model and presents the main result
of this paper, on the relation between generalization and memorization: When trained on a finite
sample set,

• With early stopping, the model reaches dimension-independent generalization error rate.

• As t→∞, the model necessarily memorizes the samples unless it diverges.

3.1. Trainability

We begin with the training dynamics on the population loss. First, we consider the random feature
model (7) and establish global convergence:

Proposition 3 (Trainability) Suppose that the target distribution Q∗ is generated by a potential
V∗ (‖V∗‖H < ∞). Suppose that our distribution Qt is generated by potential Vt with parameter
function at trained by gradient flow on either of the objectives (3). Then,

L±(Vt)− L±(V∗) ≤
||V∗ − V0||2H

2t

Next, for 2-layer neural networks, we show that whenever the conservative gradient flow con-
verges, it must converge to the global minimizer. In particular, it will not be trapped at bad local
minima and thus avoids mode collapse. This result is analogous to the global optimality guarantees
for supervised learning and regression problems (Chizat and Bach, 2018; Rotskoff and Vanden-
Eijden, 2019).

Proposition 4 Assume that the distribution Qt is generated by potential Vt, a 2-layer network with
parameter distribution ρt trained by gradient flow on either of the objectives (3). Assume that the
assumption A.2 holds. If the flow ρt converges in W1 metric (or any Wp, 1 ≤ p ≤ ∞) to some ρ∞
as t → ∞, then ρ∞ is a global minimizer of L±: Let V∞ be the corresponding 2-layer network,
then

Q∗ = Q∞ =
e−V∞P

EP [e−V∞ ]
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3.2. Generalization ability

Now we consider the most important issue for the model, the generalization error, and prove that
a dimension-independent a priori error rate is achievable within a convenient early-stopping time
interval.

We study the training dynamics on the empirical loss. For convenience, we make the following
assumptions:

• Let the base distribution P in (2) be supported on [−1, 1]d (the l∞ ball). Without loss of
generality, we use the l∞ norm on [−1, 1]d.

• Let the objective L be L−(V ) from (3) (The analysis of L+ would be more involved). Recall
that if the target Q∗ is generated by a potential V∗, then

L(V )− L(V∗) = KL(Q∗‖Q)

Denote by L(n) the objective that corresponds to Q(n)
∗ :

L(n)(V ) = E
Q

(n)
∗

[V ] + logEP [e−V ] = L(V ) + E
Q

(n)
∗ −Q∗

[V ]

• Model V by the random feature model (7) with RKHS norm ‖V ‖H = ‖a‖L2(ρ0) from (8).
Assume that the activation function σ is ReLU, and that the fixed parameter distribution ρ0 is
supported inside the l1 ball, that is, ‖w‖1 + |b| ≤ 1 for ρ0 almost all (w, b). Denote (x, 1) by
x̃ and (w, b) by w, so the activation can be written as σ(w · x̃).

Remark 5 (Universal approximation) If we further assume that ρ0 covers all directions
(e.g. ρ0 is uniform over the l1 sphere {‖w‖1 + |b| = 1}) and P is uniform over some
K ⊆ [−1, 1]d, then Proposition 1 implies that this model enjoys universal approximation
over distributions on K.

• Training rule: We train a by gradient flow (Section 2.4). Let at, Vt, Qt and a(n)
t , V

(n)
t , Q

(n)
t

be the training trajectories under L and L(n). Assume the same initialization a0 = a
(n)
0 .

Theorem 6 (Generalization ability) SupposeQ∗ is generated by a potential function V∗ (‖V∗‖H <
∞). For any δ ∈ (0, 1), with probability 1 − δ over the sampling of Q(n)

∗ , the testing error of Q(n)
t

is bounded by

KL
(
Q∗‖Q(n)

t

)
≤
‖V∗ − V0‖2H

2t
+ 2
(

4

√
2 log 2d√
n

+

√
2 log(2/δ)√

n

)
t

Corollary 7 Given the condition of Theorem 6, if we choose an early-stopping time T such that

T = Θ
(
‖V∗ − V0‖H

( n

log d

)1/4)
then the testing error obeys

KL
(
Q∗‖Q(n)

T

)
. ‖V∗ − V0‖H

( log d

n

)1/4
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This rate is significant in that it is dimension-independent up to a negligible (log d)1/4 term.
Although the upper bound n−1/4 is slower than the desirable Monte-Carlo rate of n−1/2, it is much
better than the rate n−1/d and we believe there is room for improvement. In addition, the early-
stopping time interval is reachable within a time that is dimension-independent and the width of
this interval is at least on the order of n1/4.

This result is enabled by the function representation of the model, specifically:

1. Learnability: If the target Q∗ lives in the right space for our function representation, then the
optimization rate (for the population loss L(Vt)−L(V∗)) is fast and dimension-independent.
In this case, the right space consists of distributions generated by random feature models, and
the O(1/t) rate is provided by Proposition 3.

2. Insensitivity to high dimensional structures: The function representations have small Rademacher
complexity, so they are insensitive to the empirical errorQ∗−Q(n)

∗ and the resulting deviation
of the training trajectory Q(n)

t − Qt scales as O(n−1/2) instead of O(n−1/d). This result is
provided by Lemmas 8 and 9 below.

Lemma 8 For any distributionQ∗ supported on [−1, 1]d and any δ ∈ (0, 1), with probability 1−δ
over the i.i.d. sampling of the empirical distribution Q(n)

∗ , we have

sup
‖w‖1≤1

E
Q∗−Q(n)

∗
[σ(w · x̃)] ≤ 4

√
2 log 2d

n
+

√
2 log(2/δ)

n

Lemma 9 Let L be a convex Fréchet-differentiable function over a Hilbert space H with Lipschitz
constant l. Let h be a Fréchet-differentiable function with Lipschitz constant ε. Define two gradient
flow trajectories xt, yt:

x0 = y0,
d

dt
xt = −∇L(xt),

d

dt
yt = −∇L̃(yt)

where L̃ = L+ h represents a perturbed function. Then,

L(yt)− L(xt) ≤ lεt

for all time t ≥ 0.

Numerical examples for the training process and generalization error are provided in Section 4.

3.3. Memorization

Despite that the model enjoys good generalization accuracy with early stopping, we show that in
the long term the solution Q(n)

t necessarily deteriorates.

Proposition 10 (Memorization) Under the condition of Theorem 6 and Remark 5,

1. If the trajectory Q(n)
t has only one weak limit, then Q(n)

t converges weakly to the empirical
distribution Q(n)

∗ .
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2. The true target distribution Q∗ can never be a limit point of Q(n)
t . The generalization error

and the potential function’s norm both diverge

lim
t→∞

KL(Q∗‖Q(n)
t ) = lim

t→∞
‖V (n)

t ‖H =∞

Hence, the model either memorizes the samples or diverges (coming to more than one limit, which
are all degenerate), even though it may not manifest within realistic training time.

The proof is based on the following observation.

Lemma 11 LetK ⊆ Rd be a compact set with positive Lebesgue measure, let the base distribution
P be uniform over K, and let k be a continuous and integrally strictly positive definite kernel on
K. Given any target distribution Q′ ∈ P(K) and any initialization V0 ∈ C(K), train the potential
Vt by

d

dt
Vt(x) = E(Qt−Q′)(x′)[k(x,x′)]

If Qt has only one weak limit, then Qt converges weakly to Q′. Else, none of the limit points cover
the support of Q′.

A numerical demonstration of memorization is provided in Section 4.

3.4. Regularization

Instead of early stopping, one can also consider explicit regularization: With the empirical loss L(n),
define the problem

min
‖V ‖≤R

L(n)(V )

for some appropriate functional norm ‖ · ‖ and adjustable bound R. For the special case of random
feature models (8), this problem becomes

min
‖a‖L2(ρ0)

≤R
L(n)(a) (11)

where L(n)(a) denotes L(n)(V ) with potential V generated by a.
By convexity, L(n)(a

(n)
t ) can always converge to the minimum value as t→∞ if a(n)

t is trained
by gradient flow constrained to the ball {‖a‖L2(ρ0) ≤ R}. Denote the minimizer of (11) by a(n)

R

(which exists by Lemma 19) and denote the corresponding distribution by Q(n)
R .

Proposition 12 Given the condition of Theorem 6, choose any R ≥ ‖V∗‖H. With probability 1− δ
over the sampling of Q(n)

∗ , the minimizer a(n)
R satisfies

KL(Q∗‖Q(n)
R ) .

√
log d+

√
log 1/δ√

n
R

This result can be straightforwardly extended to the case when V, V∗ are implemented as 2-layer
networks or deep residual networks, equipped with the norms defined in (E et al., 2019b). The proof
only involves the Rademacher complexity, and it is known that these functions’ complexity scales
as O( R√

n
) (E et al., 2019b).

11
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4. Numerical Experiments

Corollary 7 and Proposition 10 tell us that the training process roughly consists of two phases:
the first phase in which a dimension-independent generalization error rate is reached, and a second
phase in which the model deteriorates into memorization or divergence. We now examine how these
happen in practice.

4.1. Empirical sample rate

The key aspect of the generalization estimate of Corollary 7 is that its sample complexity O(n−α)
(α ≥ 1/4) is dimension-independent.

To verify dimension-independence, we estimate the exponent α for varying dimension d. We
adopt the set-up of Theorem 6 and train our model Q(n)

t by SGD on a finite sample set Q(n)
∗ .

Specifically, P is uniform over [−1, 1]d, the target and trained distributions Q∗, Q
(n)
t are generated

by the potentials V∗, V
(n)
t , these potentials are random feature functions (7) with ρ0 being uniform

over the l1 sphere {‖w‖1 + |b| = 1}, with parameter functions a∗, a
(n)
t and ReLU activation.

The samples Q(n)
∗ are obtained by Projected Langevin Monte Carlo (Bubeck et al., 2018). We

approximate ρ0 using m = 500 samples (particle discretization) and set a∗ ≡ 50. We initialize
training with a(n)

0 ≡ 0 and train a(n)
t by scaled gradient descent with learning rate 0.5m.

The generalization error is measured by KL(Q∗‖Q(n)
t ). Denote the optimal stopping time by

To = argmint>0KL(Q∗‖Q(n)
t )

and the corresponding optimal error byLo. The most difficult part of this experiment turned out to be
the computation of the KL divergence: Monte-Carlo approximation has led to excessive variance.
Therefore we computed by numerical integration on a uniform grid on [−1, 1]d. This limits the
experiments to low dimensions.

For each d ≤ 5, we estimate α by linear regression between log n and logLo. The sample size
n ranges in {25, 50, 100, 200}, each setting is repeated 20 times with a new sample set Q(n)

∗ . Also,
we solve for the dependence of To on n by linear regression between log n and logLo. Here are the
results:

Dimension d 1 2 3 4 5
Exponent −α of Lo −0.74 −0.71 −0.81 −0.74 −0.87

Exponent of To 0.30 0.29 0.27 0.26 0.31

Table 1: Upper: empirically, the exponent α of the sample complexity is dimension-independent.
Lower: the optimal stopping time grows with n.

Our experiments suggest that the generalization error of the early-stopping solution scales as
n−0.8 and is dimension-independent, and the optimal early-stopping time is around n0.3. This error
is much better than the upper boundO(n−1/4) given by Corollary 7, indicating that our analysis has
much room for improvement.

Shown in Figure 1 is the generalization error KL(Q∗‖Q(n)
t ) during training, for dimension

d = 5.

12



GENERALIZATION AND MEMORIZATION

Figure 1: Generalization error curves with log axes. The solid curves are averages over 20 trials,
and the shaded regions are ±1 standard deviations. The results for other d are similar.

All error curves go through a rapid descent, followed by a slower but gradual ascent due to
memorization. In fact, the convergence rate prior to the optimal stopping time appears to be expo-
nential. Note that if exponential convergence indeed holds, then the generalization error estimate of
Corollary 7 can be improved to O(n−1/2 log n).

4.2. Deterioration and memorization

Proposition 10 indicates that as t → ∞ the model either memorizes the sample points or diverges.
Our result shows that in practice we obtain memorization.

We adopt the same set-up as in Section 4.1. Since memorization occurs very slowly with SGD,
we accelerate training using Adam. Figure 2 shows the result for d = 1, n = 25.

We see that there is a time interval during which the trained model closely fits the target distri-
bution, but it eventually concentrates around the samples, and this memorization process does not
seem to halt within realistic training time.

Figure 3 suggests that memorization is correlated with the growth of the function norm of the
potential.

5. Discussion

Let us summarize some of the insights obtained in this paper:

• For distribution-learning models, good generalization can be characterized by dimension-
independent a priori error estimates for early-stopping solutions. As demonstrated by the
proof of Theorem 6, such estimates are enabled by two conditions:

1. Fast global convergence is guaranteed for learning distributions that can be represented
by the model, with an explicit and dimension-independent rate. For our example, this
results from the convexity of the model.

13
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(a) (b) (c)

(d) (e) (f )

Figure 2: From top left to bottom right: Initialization, optimal stopping time at iteration 160, long
time solutions at iterations 103, 104, 105 and 106. The orange curve is the density of the
target distribution Q∗, and the blue curves are Q(n)

t . The red dots are the samples Q(n)
∗ .

Figure 3: Left: generalization error with Adam optimizer. Right: RKHS norm ‖V (n)
t ‖H.
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2. The model is insensitive to the sampling errorQ∗−Q(n)
∗ , so memorization happens very

slowly and early-stopping solutions generalize well. For our example, this is enabled by
the small Rademacher complexity of the random feature model.

• Memorization seems inevitable for all sufficiently expressive models (Proposition 10), and
the generalization error L̃ will eventually deteriorate to either n−O(1/d) or∞. Thus, instead
of the long time limit t→∞, one needs to consider early-stopping.

The basic approach, as suggested by Theorem 6, is to choose an appropriate function repre-
sentation such that, with absolute constants α1, α2 > 0, there exists an early-stopping interval
[Tmin, Tmax] with Tmin � nα1 � Tmax and

sup
t∈[Tmin,Tmax]

L̃
(
Q∗, Q

(n)
t

)
= O(n−α2) (12)

Then, with a reasonably large sample set (polynomial in precision ε−1), the early-stopping
interval will become sufficiently wide and hard to miss, and the corresponding generalization
error will be satisfactorily small.

• A distribution-learning model can be posed as a calculus of variations problem. Given a
training objective L(Q) and distribution representation Q(f), this problem is entirely deter-
mined by the function representation or function space {‖f‖ < ∞}. Given a training rule,
the choice of the function representation then determines the trainability (Proposition 4) and
generalization ability (Theorem 6) of the model.

Future work can be developed from the above insights:

• Generalization error estimates for GANs

The Rademacher complexity argument should be applicable to GANs to bound the deviation
‖Gt − G(n)

t ‖L2(P ), where Gt, G
(n)
t are the generators trained on Q∗ and Q(n)

∗ respectively.
Nevertheless, the difficulty is in the convergence analysis. Unlike bias potential models, the
training objective of GAN is non-convex in the generator G, and the solutions to G#P = Q∗
are in general not unique.

• Mode collapse

If we consider mode collapse as a form of bad local minima, then it can benefit from a study
of the critical points of GAN, once we pose GAN as a calculus of variations problem. Unlike
the bias potential model whose parameter function V ranges in the Hilbert space H, GANs
are formulated on the Wasserstein manifold whose tangent space L2(Q;Rd) depends signif-
icantly on the current position Q. In particular, the behavior of gradient flow differs whether
Q is absolutely continuous or not, and we expect that successful GAN models can maintain
the absolutely continuity of the trajectory Qt.

• New designs

The design of distribution-learning model can benefit from a mathematical understanding.
For instance, consider the early-stopping interval (12), can there be better training rules than
gradient flow that reduces Tmin or postpones Tmax so that early-stopping becomes easier to
perform?
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Appendix A. Proofs

A.1. Proof of the Universal Approximation Property

Assumption A.1 For 2-layer neural networks (5), assume that the activation function σ : R→ R
is continuous and is not a polynomial.

For the random feature model (7), assume that the activation function is continuous, non-
polynomial and grows at most linearly at infinity, σ(x) = O(|x|). In addition, we assume that
the fixed parameter distribution ρ0(w, b) has full support over Rd+1. (See Theorem 1 of (Sun et al.,
2018) for more general conditions.) Alternatively, one can assume that σ is ReLU and ρ0 covers all
directions, that is, for all (w, b) 6= 0, we have λ(w, b) ∈ sprtρ0 for some λ > 0.

By Theorem 3.1 of (Pinkus, 1999), Theorem 1 and Proposition 1 of (Sun et al., 2018), the Barron
space B and RKHS space H defined by (6) and (8) are dense in the space of continuous functions
over any compact subset of Rd.
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Proof [Proof of Proposition 1] Denote the set of distributions generated by V by

Q = {Q ∈ P(K) | Q is given by (2) with V ∈ V}

First, for anyQ∗ ∈ Pac(K)∩C(K), assume that its density function is strictly positiveQ∗(x) ≥
ε > 0 over K. Define V∗ = logQ∗ ∈ C(K). Let {Vm} ⊆ V be a sequence that approximates V∗ in
the supremum norm, and let Qm be the distributions (2) generated by Vm. Lemma 13 implies that

lim
m→∞

KL(Q∗‖Qm) ≤ lim
m→∞

2‖V∗ − Vm‖C(K) = 0

For the general case Q∗ ∈ Pac(K) ∩ C(K), define for any ε ∈ (0, 1),

Qε∗ = (1− ε)Q∗ + εP

For each m ∈ N, let Qm be a distribution generated by some Vm ∈ V such that ‖ logQ
1/m
∗ −

Vm‖C(K) < 1/m. Then,

lim
m→∞

KL(Q∗‖Qm) = lim
m→∞

KL(Q∗‖Q1/m
∗ ) + EQ∗ log

Q
1/m
∗ (x)

Qm(x)

≤ lim
m→∞

1

m
KL(Q∗‖P ) + ‖ logQ

1/m
∗ − Vm‖C(K) = 0

where the inequality follows from the convexity of KL. Hence, the setQ is dense inPac(K)∩C(K)
under KL divergence.

Next, consider the total variation norm. Since Pac(K)∩C(K) is dense inPac(K) under ‖·‖TV ,
and since Pinsker’s inequality bounds ‖ · ‖TV from above by KL divergence, we conclude thatQ is
also dense in (Pac(K), ‖ · ‖TV ).

Now consider the W1 metric. ‖ · ‖TV can be seen as an optimal transport cost with cost function
c(x,x′) = 1x 6=x′ , so for any Q1, Q2 ∈ P(K),

W1(Q1, Q2) ≤ diam(K) ‖Q1 −Q2‖TV

Since Pac(K) is dense in P(K) under the W1 metric, we conclude that Q is dense in (P(K),W1).
Finally, note that for any p ∈ [1,∞),

Wp . diam(K)1−1/p W
1/p
1

So Q is dense in (P(K),Wp).

A.2. Estimating the Approximation Error

Lemma 13 For any base distribution P and any potential functions V1, V2,∣∣ logEP [e−V1 ]− logEP [e−V2 ]
∣∣ ≤ ‖V1 − V2‖L∞(P )
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Proof Denote Vmax, Vmin = max(V1, V2),min(V1, V2). Then,∣∣ logEP [e−V1 ]− logEP [e−V2 ]
∣∣

≤ logEP [e−Vmin ]− logEP [e−Vmax ]

≤ log
(
‖e−Vmax‖L1(P )‖eVmax−Vmin‖L∞(P )

)
− log ‖e−Vmax‖L1(P )

= log ‖eVmax−Vmin‖L∞(P )

= ‖V1 − V2‖L∞(P )

Proof [Proof of Proposition 2] The proof follows the standard argument of Monte-Carlo estimation
(Theorem 4 of (E et al., 2019b)). First, consider the case ‖V ‖B < ∞. For any ε ∈ (0, 0.01), let
ρ be a parameter distribution of V with path norm ‖ρ‖P < (1 + ε)‖V ‖B. Define the finite neural
network

Vm(x) =
1

m

m∑
j=1

ajσ(wj · x + bj) =:
1

m

m∑
j=1

φ(x; θj)

where θj = (aj ,wj , bj) are i.i.d. samples from ρ. Denote Θ = (θj)
m
j=1.

Let Qm be the distribution generated by Vm. The approximation error is given by

KL(Q‖Qm) = EQ
[
Vm − V

]
+ (logEP [e−Vm − logEP [e−V ]])

By Lemma 13,

KL(Q‖Qm) ≤ ‖Vm − V ‖L∞(Q) + ‖Vm − V ‖L∞(P )

≤ 2‖Vm − V ‖L∞(P )

Given that sprtP ⊆ BR(0), we can bound

EΘ

[
‖V − Vm‖2L∞(P )

]
≤ EΘ

[
sup
‖x‖≤R

( 1

m

m∑
j=1

φ(x; θj)− Eθ∼ρ[φ(x; θ)]
)2]

≤ EΘ

[ 1

m2
sup
‖x‖≤R

m∑
j=1

(
φ(x; θj)− Eθ′ [φ(x; θ′)]

)2]
= Eθ∼ρ

[ 1

m
sup
‖x‖≤R

(
φ(x; θ)− Eθ′ [φ(x; θ′)]

)2]
≤ Eθ∼ρ

[ 1

m
sup
‖x‖≤R

φ(x; θ)2
]

≤ Eθ∼ρ
[ 1

m
sup
‖x‖≤R

a2‖σ‖2Lip(‖w‖2 + b2)(‖x‖2 + 1)
]

≤ 1

m
‖ρ‖2P (R2 + 1)‖σ‖2Lip

≤ 1

m
(1 + ε)2‖V ‖2B(R2 + 1)‖σ‖2Lip
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Meanwhile, denote the empirical measure on Θ = (θj) by ρ(m) = 1
m

∑m
j=1 δθj . Then, its

expected path norm is bounded by

EΘ

[
‖ρ(m)‖2P

]
=

1

m

m∑
j=1

Eθj
[
a2
j (‖wj‖2 + b2j )

]
= ‖ρ‖2P ≤ (1 + ε)2‖V ‖2B

Define the events

E1 :=
{

Θ
∣∣ ‖V − Vm‖2L∞(P ) ≤ 3 · 1

m
‖V ‖2B(R2 + 1)‖σ‖2Lip

}
E2 :=

{
Θ
∣∣ ‖ρ(m)‖2P ≤ 2‖V ‖2B

}
By Markov’s inequality,

P(E1) = 1− P(EC1 ) ≥ 1−
E
[
‖V − Vm‖2L∞(P )

]
3
m‖V ‖

2
B(R2 + 1)‖σ‖2Lip

≥ 1− (1 + ε)2

3

P(E2) = 1− P(EC2 ) ≥ 1−
E
[
‖ρ(m)‖2P

]
2‖V ‖2B

≥ 1− (1 + ε)2

2

Since ε ∈ (0, 0.01),

P(E1 ∩ E2) = P(E1) + P(E2)− 1 ≥ 1− 10ε− 5ε2

6
> 0

Hence, there exists Θ = (θj)
m
j=1 such that

KL(Q‖Qm) ≤ 2‖Vm − V ‖L∞(P ) ≤
2
√

3‖V ‖B√
m

‖σ‖Lip
√
R2 + 1

‖Vm‖B ≤ ‖ρ(m)‖P ≤
√

2‖V ‖B

The argument for the case ‖V ‖H <∞ is the same.

A.3. Proof of Trainability

Lemma 14 The objectives L+, L− from (3) are convex in V .

Proof It suffices to show that logEP [eV ] is convex: Given any two potential functions V1, V2 and
any t ∈ (0, 1), Hölder’s inequality implies that

logEP
[
etV1+(1−t)V2] = logEP

[
(eV1)t(eV2)(1−t)]

≤ log
(∥∥(eV1)t

∥∥
L1/t(P )

∥∥(eV2)(1−t)∥∥
L1/(1−t)(P )

)
= log

(
EP [eV1 ]tEP [eV2 ](1−t)

)
= t logEP [eV1 ] + (1− t) logEP [eV2 ]
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Proof [Proof of Proposition 3] For the target potential function V∗, denote its parameter function by
a∗ ∈ L2(ρ0). Let the objective L be either L+ or L−. The mapping

a 7→ V = Eρ0 [a(w, b)σ(w ·+b)]

is linear while L is convex in V by Lemma 14, so L is convex in a ∈ L2(ρ0) and we simply write
the objective as L(a). Define the Lyapunov function

E(t) = t
(
L(at)− L(a∗)

)
+

1

2
||a∗ − at||2L2(dρ0)

Then,

d

dt
E(t) =

(
L(at)− L(a∗)

)
+ t · d

dt
L(at) +

〈
at − a∗,

d

dt
at
〉
L2(ρ0)

≤
(
L(at)− L(a∗)

)
−
〈
at − a∗, ∇L(at)

〉
L2(ρ0)

By convexity, for any a1, a2,

L(a1) + 〈a2 − a1, ∇L(a1)〉 ≤ L(a2)

Hence, d
dtE ≤ 0. We conclude that E(t) ≤ E(0) or equivalently

t
(
L(at)− L(a∗)

)
+

1

2
||a∗ − at||2L2(dρ0) ≤

1

2
||a∗ − a0||2L2(dρ0)

Assumption A.2 We make the following assumptions on the activation function σ(w · x + b), the
initialization ρ0 of ρt, and the base distribution P :

1. The weights (w, b) are restricted to the sphere Sd ⊆ Rd+1.

2. The activation is universal in the sense that for any distributions P,Q,

P = Q iff ∀(w, b) ∈ Sd, EP−Q
[
σ(w · x + b)

]
= 0

3. σ is continuously differentiable with a Lipschitz derivative σ′. (For instance, σ might be
sigmoid or mollified ReLU.)

4. The initialization ρ0 = ρ0(a,w, b) ∈ P(R × Sd) has full support over Sd. Specifically, the
support of ρ0 contains a submanifold that separates the two components, (∞,−a)× Sd and
(a,∞)× Sd, for some a.

5. P is compactly-supported.

Proof [Proof of Proposition 4] The proof follows the arguments of (Chizat and Bach, 2018; Rotskoff
and Vanden-Eijden, 2019). For convenience, denote (x, 1) by x̃ and (w, b) by w, so the activation
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is simply σ(w · x̃). Denote the training objective by L (L = L+ or L = L−). From a particle
perspective, the flow (10) can be written as

ȧt = −E∆t

[
σ(wt · x̃)

]
ẇt = −at E∆t

[
σ′(wt · x̃) x̃

] (13)

where ∆t = P∗ − P if L = L+ and ∆t = Q∗ −Q−t if L = L−.
Since the velocity field (13) is locally Lipschitz over R × Sd, the induced flow is a family of

locally Lipschitz diffeomorphisms, and thus preserve the submanifold given by Assumption A.2.
Denote by ρ̂t and ρ̂∞ the projections of ρt, ρ∞ onto Sd. It follows that ρ̂t has full support over Sd
for all time t <∞.

Since ρ∞ is a stationary point of L, the velocity field (13) vanishes at ρ∞ almost everywhere.
In particular, for all w in the support of ρ̂∞,

g(w) := E∆∞

[
σ(w · x̃)

]
= 0

We show that this condition holds for all w ∈ Sd. Denote S = Sd− sprtρ̂∞. Assume to the contrary
that g(w) does not vanish on S. Let w∗ ∈ S be a maximizer of |g(w)|. Without loss of generality,
let g(w∗) > 0; the same reasoning applies to g(w∗) < 0.

Since ρt → ρ∞ inW1, the bias potential Vt converges to V ∗ uniformly over the compact support
of P . Since all ∆t are supported on sprtP , the velocity field (13) converges locally uniformly to[

−E∆∞ [σ(w · x̃)]
−a E∆∞ [σ′(w · x̃) x̃]

]
=

[
−g(w)
−ag′(w)

]
For t sufficiently large, we can study the flow with this approximate field. Let (a,w) be any point
with w sufficiently close to w∗, consider a trajectory (at,wt) initialized from at0 = a,wt0 = w
with a large t0. If a < 0, then at becomes increasingly negative, while wt follows a gradient ascent
on g and converges to w∗ (or any maximizer nearby). Else, a ≥ 0, but if w is sufficiently close to
w∗, then ẇt = O(g′(w)) is very small (since g′(w∗) = 0 and g′ is Lipschitz in w), so wt will stay
around w∗ and g(wt) remains positive. Then, at eventually becomes negative, and wt converges to
w∗.

Since ρ̂t has positive mass in any neighborhood of w∗ at time t0, this mass will remain in S as
t→∞. This is a contradiction since S is disjoint from sprtρ̂∗. It follows that g(w) vanishes on all
of Sd. Then for any w ∈ Sd,

E∆∞

[
σ(w · x̃)

]
= 0

By Assumption A.2, we conclude that ∆∞ = 0, or equivalently Q∞ = Q∗ and V∞ = V∗ (up to an
additive constant).

A.4. Proof of Generalization Ability

Proof [Proof of Lemma 8] Theorem 6 of (E et al., 2019b) implies that given any n points with l∞

norm ≤ 1, the Rademacher complexity of the class {σ(w · x̃), ‖w‖1 ≤ 1} is bounded by

Radn ≤ 2

√
2 log 2d

n
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Since |σ(w · x̃)| ≤ 1 for all ‖w‖1 ≤ 1, ‖x‖∞ ≤ 1, we can apply Theorem 26.5 of (Shalev-Shwartz
and Ben-David, 2014) to conclude that

∀‖w‖ ≤ 1, E
Q∗−Q(n)

∗
[σ(w · x̃)] ≤ 2Radn +

√
2 log(2/δ)

n

with probability 1− δ over the sampling of Q(n)
∗ .

Proof [Proof of Lemma 9] Denote the inner product and norm of H by 〈x, y〉 and ‖x‖. Then,

d

dt
‖yt − xt‖ ≤ −

〈 yt − xt
‖yt − xt‖

, ∇L(yt)−∇L(xt) +∇h(yt)
〉

Since L is convex, (y − x) · (∇L(y)−∇L(x)) ≥ 0 for any x, y ∈ H . Therefore,

d

dt
‖yt − xt‖ ≤ −〈

yt − xt
‖yt − xt‖

,∇h(yt)〉

≤ ‖∇h(yt)‖ ≤ ε

so that ‖yt − xt‖ ≤ εt. By Lipschitz continuity, L(yt)− L(xt) ≤ lεt.

Proof [Proof of Theorem 6] For any time T , the testing error can be decomposed into

KL
(
Q∗‖Q(n)

T

)
= L(V

(n)
T )− L(V∗)

=
(
L(V

(n)
T )− L(VT )

)
+
(
L(VT )− L(V∗)

)
The second term is bounded by Proposition 3, while the first term can be bounded by Lemma 9. The
Hilbert space H in Lemma 9 corresponds to the parameter functions L2(ρ0) for the random feature
model, the convex objective corresponds to the objective L over a ∈ L2(ρ0),

L(a) = EQ∗ [V ] + logEP [e−V ], V (x) = Eρ0(w)[a(w)σ(w · x̃)]

and the perturbation term h corresponds to L(n) − L,

L(n)(a)− L(a) = E
Q

(n)
∗ −Q∗

[V ]

The remaining task is to estimate the constants l and ε.
First, we have l ≤ 2. For any a ∈ L2(ρ0), let Q be the modeled distribution,

‖∇L(a)‖L2(ρ0) = ‖EQ∗−Q[σ(w · x̃)]‖L2(dρ0(w))

≤ sup
‖w‖1≤1

|EQ∗−Q[σ(w · x̃)]|

≤ sup
‖w‖1≤1

|EQ∗ [σ(w · x̃)]|+ sup
‖w‖1≤1

|EQ[σ(w · x̃)]|

≤ 2

where in the last step, since all distributions are supported on [−1, 1]d, σ(w · x̃) ≤ ‖w‖1‖x̃‖∞ ≤ 1.
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Next, the estimate of ε has been provided by Lemma 8, because for any a ∈ L2(ρ0),

‖∇h(a)‖L2(ρ0) = ‖∇L(n)(a)−∇L(a)‖L2

= ‖E
Q∗−Q(n)

∗
[σ(w · x̃)]‖L2

≤ ‖E
Q∗−Q(n)

∗
[σ(w · x̃)]‖L∞(ρ0)

≤ sup
‖w‖1≤1

|E
Q∗−Q(n)

∗
[σ(w · x̃)]|

A.5. Proof of Memorization

To prove Proposition 10 and Lemma 11, we begin with a few useful lemmas.
Let M(K) be the space of finite signed measures on K. We say that a kernel k is integrally

strictly positive definite if

∀m ∈M(K), Em(x)Em(x′)[k(x,x′)]→ m = 0

EquipM(K) with the inner product

∀m1,m2 ∈M(K), 〈m1,m2〉k := Em1(x)Em2(x′)[k(x,x′)]

from which we define the MMD (maximum mean discrepancy) distance ‖ · ‖k

‖m1 −m2‖2k = 〈m1 −m2,m1 −m2〉k

LetHk be the RKHS generated by k with inner product 〈, 〉Hk . Then the MMD inner product is the
RKHS inner product on the mean embeddings fi = Emi(x)[k(x, ·)],

〈m1,m2〉k = 〈f1, f2〉Hk
‖m1 −m2‖k = sup

‖f‖Hk≤1
Em1−m2 [f ]

Lemma 15 When restricted to the subsetP(K), the MMD distance ‖·‖k induces the weak topology
and thus (P(K), ‖ · ‖k) is compact.

Proof By Lemma 2.1 of (Simon-Gabriel et al., 2020), the MMD distance metrizes the weak topol-
ogy of P(K), which is compact by Prokhorov’s theorem.

As P(K) is a convex subset ofM(K), we can define the tangent cone at each point Q ∈ P(K)
by

TQP(K) =
{
λ∆

∣∣ λ ≥ 0, ∆ = ∆+ −∆−, ∆± ∈ P(K), ∆− � Q
}

and equip it with the MMD norm, ‖∆‖2k = E∆2 [k].

Given the gradient flow Vt defined in Lemma 11, the distribution Qt evolves by

d

dt
Qt(x) =

(
v(x;Qt)− EQt(x′)[v(x′;Qt)]

)
Qt(x)
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v(x;Q) := E(Q′−Q)(x′)[k(x,x′)]

We can extend this flow to a dynamical system on P(K) in positive time t ≥ 0, defined by

d

dt
Qt = v(Qt)Qt

v(Q) = v(· ;Q)− EQ(x′)[v(x′;Q)]
(14)

Each v(Q)Q is a tangent vector in TQP(K).
Note that we can rewrite v and v in terms of the RKHS norm: Let f, f ′ be the mean embeddings

of Q,Q′,

v(x;Q) =
〈
k(x, ·), f ′ − f

〉
Hk

v(x;Q) =
〈
k(x, ·)− f, f ′ − f

〉
Hk

It follows that v and v are uniformly continuous over the compact space K × (P(K), ‖ · ‖k).

Lemma 16 Given any initialization Q0 ∈ P(K), there exists a unique solution Qt, t ≥ 0 to the
dynamics (14).

Proof The integral form of (14) can be written as

∀t ≥ 0, Qt = Q0 +

∫ t

0
v(Qs)Qsds (15)

where we adopt the Bochner integral on (M(K), 〈, 〉k). In the spirit of the classical Picard-Lindelöf
theorem, we consider the vector space C([0, T ],M(K)) equipped with sup-norm

|||φ||| = sup
t∈[0,T ]

‖φ(t)‖k

On the complete subspace C([0, T ],P(K)), define the operator φ 7→ F (φ) by

F (φ)t = φ0 +

∫ t

0
v(φs)φsds

Define the sequence φ0 ≡ Q0 and φn+1 = F (φn).
Note that the tangent field (14) is Lipschitz

∀Q1, Q2, ‖v(Q1)Q1 − v(Q2)Q2‖k ≤ c‖Q1 −Q2‖k

with c ≤ 4(‖k‖2C(K×K) + ‖k‖C(K×K)). Then, with T ≤ 1/2c,

|||φn+1 − φn||| ≤ sup
t∈[0,T ]

∥∥∫ t

0
v(φns )φns − v(φn−1

s )φn−1
s ds

∥∥
k

≤
∫ T

0
‖v(φnt )φnt − v(φn−1

t )φn−1
t ‖kdt

≤ cT sup
t∈[0,T ]

‖φnt − φn−1
t ‖k
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≤ 1

2
|||φn − φn−1|||

By the completeness of (C([0, T ],P(K)), ||| · |||) and Banach fixed point theorem, the sequence φn

converges to a unique solution φ of (15) on [0, T ]. Then, we can extend this solution iteratively to
[T, 2T ], [2T, 3T ], . . . and obtain a unique solution on [0,∞).

Denote the set of fixed points of (14) by

Po = {Q ∈ P(K) | v(Q)Q = 0}

Also, define the set of distributions that have larger supports than the target distribution Q′

P∗ = {Q ∈ P(K) | sprtQ′ ⊆ sprtQ}

Lemma 17 We have the following inclusion

Po ⊆ {Q′} ∪ (P(K)− P∗)

Given any initialization Q0 ∈ P(K), let Qt, t ≥ 0 be the trajectory defined by Lemma 16 and let
Q be the set of limit points in MMD metric

Q =
⋂
T→∞

{Qt, t ≥ T}
‖·‖k

then Q ⊆ Po.

Proof For any fixed point Q ∈ Po, we have v(x;Q) = 0 for Q-almost every x. By continuity, we
have

∀x ∈ sprtQ, v(x;Q) = EQ(x′)[v(x′;Q)] (16)

If we further suppose that Q ∈ P∗, then this equality holds for Q′-almost all x, so

0 = E(Q−Q′)(x)[v(x;Q)]

= E(Q−Q′)2(x,x′)[k(x,x′)]

= ‖Q−Q′‖2k

Since k is integrally strictly positive definite, we have Q = Q′. It follows that

Po ∩ P∗ = {Q′}

or equivalently Po ⊆ {Q′} ∪ (P(K)− P∗).
Meanwhile, the MMD distance ‖Qt −Q′‖2k is decreasing along any trajectory Qt of (14):

d

dt

1

2
‖Qt −Q′‖2k = EQt(x)E(Qt−Q′)(x′)

[
k(x,x′) v(x;Qt)

]
= −EQt(x)

[
v(x;Qt)

2
]

≤ 0

(17)
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Define the extended sublevel sets for every c > 0,

Pc := {Q ∈ P(K) | ‖Q−Q′‖k ≤ c or Q ∈ Po}

By Lemma 15, the space (P(K), ‖ · ‖k) is compact, so the set of limit pointsQ of the trajectory Qt
is nonempty. The inequality (17) is strict if Qt /∈ Po, so these limit points all belong to⋂

c→0+

Pc = Po

Lemma 18 Given any initialization Q0 ∈ P∗, if the limit point set Q contains only one point Q∞,
then Q∞ ∈ P∗ and thus Q∞ = Q′. Else, Q is contained in P(K)− P∗.

Proof For any open subset A that intersects sprtQ0, we have Q0(A) > 0. Also

d

dt
Qt(A) = EQt [1A(x)v(x;Qt)]

≥ −Qt(A)‖v(Qt)‖L∞(Qt)

≥ −4‖k‖C(K×K)Qt(A)

So Qt(A) remains positive for all finite t. It follows that sprtQ0 ⊆ sprtQt and Qt ∈ P∗ for all t.
First, consider the case Q = {Q∞}. Assume for contradiction that Q∞ = Q̃ for some Q̃ ∈

Po − {Q′} ⊆ P(K)− P∗. Equation (16) implies that

EQ̃[v(x; Q̃)] = 0

and thus

EQ′ [v(x; Q̃)] = EQ′−Q̃[v(x; Q̃)]

= EQ′−Q̃[v(x; Q̃)]

= ‖Q′ − Q̃‖2k
> 0

In particular, there exists some measureable subset So ⊆ sprtQ′ and some δ > 0 such that

∀x ∈ So, v(x; Q̃) > 2δ

By continuity, there exists some open subset S (So ⊆ S) such that its closure S satisfies

∀x ∈ S, v(x; Q̃) ≥ δ

Meanwhile, since S intersects sprtQ′ ⊆ sprtQt, we have Qt(S) > 0 for all t. Whereas (16) implies
that S is disjoint from sprtQ̃.

Since v is continuous over (x, Q) ∈ K × (P(K), ‖ · ‖k) and S is compact, there exists some
neighborhood Br(Q̃) = {Q ∈ P(K) | ‖Q− Q̃‖k < r} such that

∀Q ∈ Br(Q̃), ∀x ∈ S, v(x; Q̃) ≥ 0
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Since the trajectory Qt converges in the MMD distance ‖ · ‖k to Q̃, there exists some time t0
such that for all t ≥ t0, Qt ∈ Br(Q̃). It follows that

d

dt
Qt(S) = EQt [1S(x)v(x;Qt)] ≥ 0

so that Qt(S) ≥ Qt0(S) for all t ≥ t0. Yet, Lemma 15 implies that Qt converges weakly to Q̃, so
that

0 = Q̃(S) ≥ lim sup
t→∞

Qt(S)

A contradiction. We conclude that the limit point Q∞ does not belong to Po − {Q′}. By Lemma
17, we must have Q∞ = Q′.

Next, consider the case whenQ has more than one point. Inequality (17) implies that the MMD
distanceL(Q) = ‖Q−Q(n)

∗ ‖2k is monotonously decreasing along the flowQt. Suppose thatQ′ ∈ Q,
then limt→∞ L(Qt) = 0 and thusQ = {Q′}, a contradiction. Hence,Q ⊆ Po−{Q′} ⊆ P(K)−P∗.

Proof [Proof of Lemma 11] Since V0 ∈ C(K), the initialization Q0 has full support over K and
thusQ0 ∈ P∗. IfQt converges weakly to some limitQ∞, Lemma 15 implies thatQt also converges
in MMD metric to Q∞. Then, Lemma 18 implies that the limit Q∞ must be Q′.

If there are more than one limit, then Lemma 18 implies that all limit points belong toP(K)−P∗
and thus do not cover the full support of Q′.

Proof [Proof of Proposition 10] We simply set Q′ = Q
(n)
∗ . Note that since a(n)

t is trained by

d

dt
a

(n)
t (w) = E

(Q
(n)
t −Q

(n)
∗ )(x)

[σ(w · x̃)]

the training dynamics for the potential V (n)
t is the same as in Lemma 11

d

dt
V

(n)
t (x) = E

(Q
(n)
t −Q

(n)
∗ )(x′)

[k(x,x′)]

with kernel k defined by
k(x,x′) = Eρ0(w)[σ(w · x̃)σ(w · x̃′)]

It is straightforward to check that k is integrally strictly positive definite: For any m ∈M(K), if

0 = ‖m‖2k = Eρ0(w)

(
Em(x)[σ(w · x̃))]

)2
then for ρ0-almost all w, Em(x)[σ(w · x̃)] = 0. It follows that for all random feature models f from
(7), we have Em(x)[f(x)] = 0. Assuming Remark 5, the random feature models are dense in C(K)
by Proposition 1, so this equality holds for all f ∈ C(K). Hence, m = 0 and k is integrally strictly
positive definite.

Hence, Lemma 11 implies that if Q(n)
t has one limit point, then Q(n)

t converges weakly to Q(n)
∗ .

Else, no limit point can cover the support of Q(n)
∗ and thus do not have full support over K. Since

the true target distribution Q∗ is generated by a continuous potential V∗, it has full support and thus
does not belong to Q and KL(Q∗‖Q) =∞ for all Q ∈ Q. Similarly, we must have

lim inf
t→∞

‖V (n)
t ‖H =∞

otherwise some subsequence of Q(n)
t would converge to a limit with full support.
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A.6. Proof for the Regularized Model

Lemma 19 For any R ≥ 0, there exists a minimizer of (11).

Proof Since the closed ball BR = {‖a‖L2(ρ0) ≤ R} is weakly compact in L2(ρ0), it suffices to
show that the mapping

L(n)(a) = Eρ0(w)

[
a(w)E

Q
(n)
∗ (x)

[σ(w · x̃)]
]

+ logEP (x)

[
e−Eρ0(w)[a(w)σ(w·x̃)]

]
is weakly continuous overBR (e.g. show that the term EP

[
e−Eρ0(w)[a(w)σ(w·x̃)]

]
can be expressed as

the uniform limit of a sequence of weakly continuous functions over BR). Then, every minimizing
sequence of L(n) in BR converges weakly to a minimizer of (11).

Proof [Proof of Proposition 12]
For any a ∈ L2(ρ0),

|L(a)− L(n)(a)| ≤ Eρ0(w)

[
|E
Q∗−Q(n)

∗
[a(w)σ(w · x̃)]|

]
≤ ‖a‖L2(ρ0) · sup

‖w‖1≤1
E
Q∗−Q(n)

∗
[σ(w · x̃)]

Thus, Lemma 8 implies that with probability 1− δ over the sampling of Q(n)
∗ ,

|L(a)− L(n)(a)| ≤ ‖a‖L2(ρ0) ·
(

4

√
2 log 2d

n
+

√
2 log(2/δ)

n

)
(18)

It follows that

L(a
(n)
R ) ≤ L(n)(a

(n)
R ) +

4
√

2 log 2d+
√

2 log(2/δ)√
n

R

≤ L(n)(a∗) +
4
√

2 log 2d+
√

2 log(2/δ)√
n

R

≤ L(a∗) +
4
√

2 log 2d+
√

2 log(2/δ)√
n

(R+ ‖a∗‖L2(ρ∗))

where the first and third inequalities follow from (18) and the second inequality follows from the
fact that a∗ ∈ {‖a‖L2(ρ0) ≤ R}.

Hence,

KL(Q∗‖Q(n)
R ) = L(a

(n)
R )− L(a∗) ≤ 2R ·

4
√

2 log 2d+
√

2 log(2/δ)√
n
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