
Proceedings of Machine Learning Research vol 145:1–36, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

Deep Neural Networks Are Effective At Learning High-Dimensional
Hilbert-Valued Functions From Limited Data

Ben Adcock BEN ADCOCK@SFU.CA
Department of Mathematics, Simon Fraser University, Canada

Simone Brugiapaglia SIMONE.BRUGIAPAGLIA@CONCORDIA.CA
Department of Mathematics and Statistics, Concordia University

Nick Dexter NICHOLAS DEXTER@SFU.CA
Department of Mathematics, Simon Fraser University, Canada

Sebastian Moraga SMORAGAS@SFU.CA

Department of Mathematics, Simon Fraser University, Canada

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract
The accurate approximation of scalar-valued functions from sample points is a key task in math-
ematical modelling and computational science. Recently, machine learning techniques based on
Deep Neural Networks (DNNs) have begun to emerge as promising tools for function approxima-
tion in scientific computing problems, with some impressive results achieved on problems where
the dimension of the underlying data or problem domain is large. In this work, we broaden this
perspective by focusing on the approximation of functions that are Hilbert-valued, i.e. they take
values in a separable, but typically infinite-dimensional, Hilbert space. This problem arises in many
science and engineering problems, in particular those involving the solution of parametric Partial
Differential Equations (PDEs). Such problems are challenging for three reasons. First, pointwise
samples are expensive to acquire. Second, the domain of the function is usually high dimensional,
and third, the range lies in a Hilbert space. Our contributions are twofold. First, we present a novel
result on DNN training for holomorphic functions with so-called hidden anisotropy. This result
introduces a DNN training procedure and a full theoretical analysis with explicit guarantees on the
error and sample complexity. This error bound is explicit in the three key errors occurred in the
approximation procedure: the best approximation error, the measurement error and the physical
discretization error. Our result shows that there exists a procedure (albeit a non-standard one) for
learning Hilbert-valued functions via DNNs that performs as well as, but no better than current best-
in-class schemes. It therefore gives a benchmark lower bound for how well methods DNN training
can perform on such problems. Second, we examine whether better performance can be achieved
in practice through different types of architectures and training. We provide preliminary numer-
ical results illustrating the practical performance of DNNs on Hilbert-valued functions arising as
solutions to parametric PDEs. We consider different parameters, modify the DNN architecture to
achieve better and competitive results and compare these to current best-in-class schemes.
Keywords: deep neural networks, deep learning, high-dimensional approximation, parametric
PDEs, Hilbert-valued functions, polynomial approximations, anisotropy

© 2021 B. Adcock, S. Brugiapaglia, N. Dexter & S. Moraga.

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

1. Introduction

Driven by their success in many historically-challenging machine learning problems, Deep Neural
Networks (DNNs) and Deep Learning (DL) are beginning to be applied successfully to challenging
tasks in computational science and engineering. Such tasks are often characterized by the high
dimensionality of their data or problem. Examples include inverse problems in imaging Adcock
and Hansen (2021); Ongie et al. (2020), molecular dynamics simulations Faber et al. (2017), protein
structure prediction Jumper et al. (2020), discovery of unknown dynamical systems Lagergren et al.
(2020), Partial Differential Equations (PDEs) Berg and Nyström (2018) and, as discussed below,
parameterized PDEs for Uncertainty Quantification (UQ).

The application of DL to such problems is supported by a rapidly-growing theory on the ap-
proximation properties of DNNs (see, e.g., Yarotsky (2017); Bach (2017); Petersen and Voigtlaen-
der (2018); Beck et al. (2019); Grohs et al. (2019)). This has become an extremely active area, with
many new results produced within the last several years. Generalizing the classical universal ap-
proximation theorem Cybenko (1989); Hornik et al. (1989); Leshno et al. (1993), recent works have
shown approximation results for DNNs in terms of their depth Liang and Srikant (2016); Lu et al.
(2020); Yarotsky (2018), for functions in Sobolev spaces Gühring et al. (2020), Hölder spaces Shen
et al. (2020) and Barron spaces E et al. (2019), for bandlimited functions Montanelli et al. (2019)
and holomorphic functions E and Q (2018); Opschoor et al. (2019), as well as for tasks in scientific
computing such as approximation of high-dimensional functions Schwab and Zech (2019); Li et al.
(2019) and PDEs Grohs et al. (2018); Berner et al. (2020), dimensionality reduction Zhang et al.
(2019), and methods for DEs Lu et al. (2017); E and Yu (2018). Other works have established
connections between DNNs and classical methods of approximation such as polynomials Schwab
and Zech (2019); Daws and Webster (2019b), splines Unser (2019), sparse grids Montanelli and Du
(2019) and finite elements Opschoor et al. (2019).

The above list represents only a selection of the many recent results in this area. However, it
is notable that these results generally fall into the category of existence theory: namely, they assert
the existence of a DNN with desirable approximation properties, but not a constructive means to
compute such a network (we note in passing several exceptions Dereventsov et al. (2019); Fokina
and Oseledets (2019); Daws and Webster (2019a), although these generally lack theoretical guaran-
tees on trainability). As discussed in Geist et al. (2020) and shown in Adcock and Dexter (2021),
there can often be a substantial gap between theoretical existence results and practical performance
of DNNs when trained using standard tools.

Motivated by such a performance gap, this paper considers the following three key issues:
(1) The vast majority of previous work considers only scalar-valued function approximation.
(2) Existence theory says little about whether such a DNN can be obtained by training and the

number of samples of the function needed to do so.
(3) Many applications in computational science are relatively data starved. Hence it is critical to

understand the sample complexity DNN approximation: namely, how much data is needed to train
an accurate DNN for a given function.

Specifically, the focus of this paper is on learning high-dimensional, Hilbert-valued functions
from limited datasets using DNNs. We next describe the motivations for considering this problem.

2

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

1.1. Motivations

An important task in UQ involves constructing a surrogate model of a physical system that depends
on a set of parameters y ∈ Rd. The physical system is typically modelled via a PDE (or system
of PDEs) in terms of the relevant spatial and temporal variables. In other words, its solution is a
function u = u(x,y), where x ∈ Rn, n = 1, 2, 3, 4, denotes the physical variables (space and time)
and y denotes the parameters. The function u is the solution to a PDE system

Dx(u,y) = 0, (1)

where Dx(·,y) is a differential operator in the physical variable x that depends on the parametric
variable y. The objective in surrogate model construction is to understand the parametric depen-
dence of the solution u. Since the PDE problem can often be posed (in weak form) in a separable
Hilbert space V , this is equivalent to approximating the Hilbert-valued function

y ∈ Rd 7→ u(y) ∈ V, (2)

(we suppress the x dependence for ease of notation). This problem have several key features that
motivate this work (see, e.g. Cohen and DeVore (2015); Gunzburger et al. (2014) for more details):

(i) The input dimension d is typically high. Indeed, the more parameters, the better the model
for the physical system. Typically, d may range from ten to over a hundred. Moreover, in some
situations, one may also consider functions with infinitely-many parameters, i.e. d =∞.

(ii) The output u(y) takes values in a Hilbert space V . In some applications one may only
wish to approximate some scalar Quantity-of-Interest (QoI) of u (e.g. the spatial mean f(y) =∫

Ω u(x,y) dx over the physical domain Ω ⊆ Rn). However, other applications call for approximat-
ing the whole solution u(y) (from which one can obviously approximate any number of QoI’s).

(iii) Computing samples is expensive. For each value of y, evaluating u(y) requires solving the
PDE (1) via a computationally-intensive numerical simulation. In practice, generating the samples
may take a time ranging from minutes to days or even weeks. Furthermore, since the PDE is never
solved exactly, this process always commits an error – the measurement error as we term it.

To summarize, surrogate model construction involves approximating a high-dimensional, Hilbert-
valued function from limited data. Such a task is clearly impossible without further assumptions.
Fortunately, u is often smooth. To be precise, under certain conditions on the problem (1) one can
show that u is a holomorphic function of the parameters y Cohen et al. (2010, 2011); Chkifa et al.
(2015) (see also Cohen and DeVore (2015) for an in-depth review). This opens the door for approx-
imating u efficiently from limited samples, even when d is large, and thereby lessening the curse of
dimensionality. We shall exploit this assumption throughout.

Even with this assumption, though, there is another hurdle to overcome; namely the infinite di-
mensionality of V . The usual way to address this is to introduce a finite-dimensional discretization
Vh, where h is a discretization parameter, and compute an approximation taking values in Vh. Typ-
ically, since u is the solution of a PDE, one takes Vh to be a finite element discretization. However,
regardless of how Vh is chosen, it is important that the discretization error (the effect of replacing
V by Vh) be quantified explicitly in the overall error bound. We also address this matter.

1.2. Contributions

In this work we study the approximation of a holomorphic, Hilbert-valued function f : U → V (we
now switch notation from u to f since the problem we consider does not necessarily need to arise

3

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

as the solution of a parametric PDE) from m noisy sample values

di = f(yi) + ni, ∀i = 1, . . . ,m.

We assume throughout that U = [−1, 1]d is the unit hypercube and the yi are drawn identically and
independently from the uniform measure on U . Note that this choice of sampling is not only typical
in practice, it is critical in allowing for theoretical sample complexity estimates that scale efficiently
with the dimension d. The choice of the hypercube implies that the parameters y1, . . . , yd (where
y = (yi)

d
i=1) are independent and vary in finite intervals (which, up to rescaling, can be taken to be

equal to [−1, 1]). Both assumptions are also standard in practice.
The values ni are the measurement errors. They constitute the errors involved in computing

f , whether it be via a numerical PDE solve or some other unspecified process. Throughout, we
assume that V is a separable Hilbert space and that it is discretized via a finite-dimensional subspace
Vh ⊆ V . We make the additional assumption that the samples di are elements of Vh, i.e.

di ∈ Vh, ∀i = 1, . . . ,m,

and we seek to compute an approximation f̃ : U → Vh to f taking values in Vh.
Our first main contribution is a novel theoretical result, Theorem 5. It shows that there exists a

DNN architecture (of a given size and depth depending on m and d) and a training procedure (i.e.
a loss function) such that any minimizer of the corresponding loss function minimization problem
approximates f up to an explicit error bound. This error bound splits into three key terms that fully
describe the effects of all main errors involved in the approximation process:

(a) an approximation error that is exponentially-small in m1/(2d), up to log factors;
(b) a measurement error that is proportional to the `2-norm of the measurement noise (ni)

m
i=1;

(c) a physical discretization error that is proportional to the best approximation error of f in Vh.
We term this result a practical existence theorem for Hilbert-valued function approximation. Going
beyond standard existence theory, as discussed above, it shows not only the existence of a DNN with
desirable approximation properties, but both a means of obtaining it via training and an estimate on
the sample complexity via the exponentially-decaying approximation error (a).

A key facet of this work is the assumption on f . While we assume f is holomorphic, we do
not assume any further information on it. In particular, f may have anisotropic dependence on the
parameters y1, . . . , yd – i.e. it may vary more rapidly in some directions than in others – and such
anisotropy may be hidden – i.e. it is not used to construct the approximation. This hidden anisotropy
assumption is highly relevant in practice, yet substantially harder to tackle than scenarios where such
behaviour is known a priori. We formalize exactly what we mean by hidden anisotropy in §3.

As we note below, current best-in-class methods for holomorphic, Hilbert-valued function ap-
proximation are based on multivariate orthogonal polynomials and also achieve exponential rates
of convergence in m1/(2d). Through (a) we show that the obtained DNN achieves the same rate of
convergence, up to a constant. Hence this work shows the existence of a DNN training procedure
that can perform as well as current best-in-class methods.

Further, we also categorize all the errors in the DNN training procedure, including the measure-
ment error (b) and physical discretization error (c). The latter is ubiquitous in simulations (due to
the need to work with Vh instead of V), but often not included in theoretical analyses. Our work
thus sheds light on understanding how to tune the method parameters (m, h, and so forth) to balance
the various errors, thus leading to optimal practical performance. It also raises the potential for the
use of multilevel or multifidelity schemes, where m and h are simultaneously refined.

4

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

Note that we establish Theorem 5 by carefully re-interpreting a polynomial-based approxima-
tion based on compressed sensing as a DNN training procedure in which all the weights and biases
are fixed, except those in the final layer. We do not claim that this training procedure is practically
advantageous to use – indeed, since it mimics a polynomial approximation by construction, it is
unlikely to offer better performance than the latter. The purpose of Theorem 5 is to show that there
are provably good ways to set up and train DNNs for holomorphic function approximation, even if
these are not standard procedures. It highlights the potential to achieve better performance in prac-
tice with trained DNNs, by modifying the training setup and DNN architectures suitably. Further,
since polynomial-based methods are strongly tied to the underlying smoothness of the functions
being approximated, while DNNs are not, it suggests DNNs can be useful flexible tools, with the
potential of achieving good performance across a range of different function classes.

Nonetheless, with this gap between theory and practice in mind, we end this paper by presenting
initial numerical experiments showing the effectiveness of trained DNNs for parametric PDE prob-
lems. We also compare with best-in-class compressed sensing-based polynomial approximation
schemes, with a focus on the sample complexity of both approaches. Theorem 5 shows that there
exists a DNN architecture and training procedure that performs at least as well as such schemes in
this regard, but, as noted, this setup is neither standard, nor expected to yield any better performance
in practice. Following Adcock and Dexter (2021), in our experiments we use standard DNN archi-
tectures coupled with standard loss functions and training algorithms. We show that with proper
architecture and hyperparameter selection we are able to achieve competitive results. In particu-
lar, we can use smaller architectures than those suggested by Theorem 5 and the standard `2-loss
functions, provided we train all the weights and biases of the DNN. Further, we show that we can
actually outperform state-of-the-art polynomial methods for the problem considered by switching
from the ReLU (as used in Theorem 5) to smoother activations functions. All in all, these prelimi-
nary results demonstrate the promise of the DNN approach for parametric PDEs in terms of sample
complexity. This complements recent results shown in Geist et al. (2020), which showed favourable
performance of DNNs with respect to the dimension d.

1.3. Related work

There are various ways to approximate the solution map of a parametric PDE, including reduced ba-
sis methods Hesthaven et al. (2015) and polynomial chaos expansions Xiu and Karniadakis (2002).
In this paper, we focus on comparing DNN performance against the latter. Polynomial expansions
are well-suited to smooth function approximation, with the so-called best s-term polynomial ap-
proximation offering exponential rates of convergence in s1/d for holomorphic functions (see §3).
For a function with isotropic or known anisotropic behaviour in its variables, such an approximation
can be computed in a number of ways, including interpolation or least squares Cohen and Migliorati
(2018). The situation becomes more challenging when the anisotropy is hidden. Adaptive interpo-
lation or least-squares schemes Chkifa et al. (2013, 2014); Cohen and Migliorati (2018); Gittelson
(2013); Migliorati (2015) may work in practice, though they generally lack theoretical guarantees.

In the last five years, techniques based on compressed sensing have emerged as viable tools
for this problem (see, e.g., Adcock et al. (2017, 2019); Chkifa et al. (2018); Doostan and Owhadi
(2011); Hampton and Doostan (2015) and references therein). Theoretical guarantees show that
such techniques provide quasi-best s-term polynomial approximations, with favourable sample
complexities Adcock (2018); Adcock et al. (2017); Chkifa et al. (2018). However, standard com-

5

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

pressed sensing only allows for recovery of real or complex sparse vectors, e.g., scalar QoI’s of the
solution map (2), and therefore does not allow for recovery guarantees for Hilbert-valued functions.
The Simultaneous Compressed Sensing (SCS) method Dexter et al. (2019) enables fully discrete ap-
proximation of the solution map by combining spatial discretization, e.g., finite elements, with joint-
sparse vector recovery techniques modified for recovery in Vh. The SCS framework also extends
theoretical recovery guarantees from compressed sensing to the Hilbert-valued setting, thereby in-
heriting the same quasi-best s-term approximation rates and sample complexity estimates. Because
of its favourable behaviour and theoretical guarantees, we refer to SCS as the current best-in-class
method, and seek to match (or beat) this performance with a DNN procedure.

Recently, a number of works have applied DNNs to parametric PDEs. See Cyr et al. (2020);
Dal Santo et al. (2020); Geist et al. (2020); Khoo et al. (2020); Laakmann and Petersen (2020)
and references therein. These works generally lack theoretical analysis. On the theoretical side,
Opschoor et al. (2019) provides an existence theorem for parametric PDEs with holomorphic so-
lution maps. The work Kutyniok et al. (2020) considers the reduced basis approach to parametric
PDEs, showing the existence of a DNN whose size depends on the intrinsic low-dimensionality of
the solution manifold. Neither result addresses whether such a DNN can be trained, nor the sample
complexity in doing so. Our work in particular complements Opschoor et al. (2019) by showing
that DNNs admitting the same approximation error can be obtained as solutions of certain training
problems. Furthermore, our result also makes all errors committed by the process explicit, including
the aforementioned measurement and physical discretization errors, which have typically not been
addressed in previous works.

2. Learning Hilbert-valued functions via DNNs

We first require some notation. Throughout d ∈ N denotes the dimension of the input space. We
write Nd0 := {ν = (νk)

d
k=1 : νk ∈ N0} for the set of nonnegative integer multi-indices and 0 and 1

for the multi-indices consisting of all zeros and all ones respectively. The inequality µ ≤ ν between
two multi-indices is understood componentwise.

For 1 ≤ p ≤ ∞, we write ‖·‖p for the usual vector `p-norm and for the induced matrix `p-norm.
Moreover, for 1 ≤ p, q <∞ we define the matrix `p,q-norm as ‖G‖qp,q :=

∑n
j=1 (

∑m
i=1 |Gij |p)

q/p.
We also use the notation A . B to mean that there exists a numerical constant c > 0 independent
of A and B such that A ≤ cB, and likewise for A & B.

2.1. Setup

We now describe the setup in detail. We write y = (y1, . . . , yd) for the variables and let U =
[−1, 1]d. We consider the uniform probability measure on U , i.e.

d%(y) = 2−d dy, ∀y ∈ U , (3)

and write Lp%(U) for the corresponding weighted Lebesgue spaces of scalar-valued functions over
U and ‖·‖Lp%(U) for their norms.

Throughout, we let V be a separable Hilbert space over the field R (we could also consider the
field C with few additional difficulties), with inner product 〈·, ·〉V and corresponding norm

‖v‖V :=
√
〈v, v〉V .

6

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

We let VN be the vector space of Hilbert-valued vectors of lengthN , i.e. ν = (νi)
N
i=1 where νi ∈ V ,

i = 1, . . . , N . More generally, let Λ ⊆ Nd0 denote a (possibly infinite) multi-index set. We write
v = (vν)ν∈Λ for a sequence with V-valued entries, vν ∈ V . For 1 ≤ p ≤ ∞, we define the space
`p(Λ;V) as the set of those sequences v = (vν)ν∈Λ for which ‖v‖V,p <∞, where

‖v‖V,p :=

{ (∑
ν∈Λ ‖vν‖

p
V
)1/p

1 ≤ p <∞
supν∈Λ ‖vν‖V p =∞

.

When p = 2 this is a Hilbert space with inner product

〈u,v〉V,2 =
∑
ν∈Λ

〈uν , vν〉V .

Next, we define the weighted (Lebesgue-)Bochner space Lp%(U ;V) as the space consisting of (equiv-
alence classes of) strongly %-measurable functions f : U → V for which ‖f‖Lp%(U ;V) <∞, where

‖f‖Lp%(U ;V) :=

{(∫
U ‖f(y)‖pV d%(y)

)1/p
1 ≤ p <∞

ess supy∈U ‖f(y)‖V p =∞
. (4)

In general, we cannot work directly in the space V , since it is usually infinite dimensional. Hence,
we consider a finite-dimensional discretization

Vh ⊆ V. (5)

Here h > 0 denotes a discretization parameter, e.g. the mesh size in the case of a finite element
discretization. In the context of finite elements, assuming (5) corresponds to considering so-called
conforming discretizations. We let {ϕk}Kk=1 be a (not necessarily orthonormal) basis of Vh, where
K = K(h) = dim(Vh). We write Ph : V → Vh for the orthogonal projection onto Vh and for
f ∈ L2

%(U ;V) we let Phf ∈ L2
%(U ;Vh) be the function defined almost everywhere as

(Phf)(y) = Ph(f(y)), ∀y ∈ U .

2.2. DNNs

Let f : U → V and write its projection in terms of the basis {ϕk}Kk=1 for Vh as

f ≈ (Phf)(y) =
K∑
k=1

ck(y)ϕk.

Notice that the coefficients ck are scalar-valued functions of y, i.e. ck : U → R. Our objective is to
approximate the coefficients with a DNN. We consider standard feedforward DNN architectures of
the form Φ : Rd → RK , where

Φ(y) = AL+1(σ(AL(σ(· · ·σ(A0(x)) · · ·)))). (6)

Here Al : RNl → RNl+1 , l = 0, . . . , L + 1 are affine maps and σ is the activation function, which
we assume acts componentwise, i.e. σ(y) := (σ(yi))

d
i=1 for y = (yi)

d
i=1. The values {Nl}L+1

l=1 are
the widths of the hidden layers. By definition N0 = d and NL+2 = K. Given (6), we write

fΦ(y) =
K∑
k=1

(Φ(y))kϕk, (7)

7

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

for the resulting approximation to f . We also write N for a class of DNNs of the form (6). We
term L the depth, and denote this as depth(N). We write param(N) for the number of trainable
parameters inN (i.e. the number of weights and biases that parameterizeN). We also write size(N)
for the size of the DNNs in N . This is equal to the total number of nonzero weights and biases.

2.3. Problem statement

Let f : U → V be a Hilbert-valued function and consider m sample points y1, . . . ,ym drawn
independently from the uniform measure (3). We assume noisy evaluations of f of the form

di = f(yi) + ni ∈ Vh, ∀i = 1, . . . ,m, (8)

where ni ∈ V is the ith noise term. It is important to note that the samples di are elements of the
finite-dimensional space Vh. Hence, the term ni encompasses the error involved in approximating
f(yi) ∈ V by an element of Vh. This takes into account the fact that these measurements are
computed by some unspecified routine (e.g. a PDE solver in the case of parametric PDEs) which
returns a value in the finite-dimensional Hilbert space Vh (e.g. a finite element space). We do
not specify precisely how this approximation is performed, nor how large this error is, but merely
aim to show an error bound that scales linearly with respect to the ni. A particular case is when
di = Ph(f(yi)), but in what follows it is not necessary to assume this, as the numerical computation
that leads to di may not involve computing the projection Ph. We remark in passing that one can
easily extend this analysis to the case where the space Vh used for constructing the approximation
fΦ to f differs from that used to compute the evaluation of f .

Since any algorithm for learning a DNN needs to take finite inputs, we assume the evaluations
(8) are provided to us via the basis {ϕk}. To be precise, we assume we have access to the data

{dik}m,ki,k=1 , where f(yi) + ni =
K∑
i=1

dikϕk. (9)

With this in hand, the problem is as follows:

Problem 1 Use the data (9) to learn a DNN Φ̂ : Rd → RK from the class N , and therefore an
approximation fΦ̂ to f of the form (7).

3. Holomorphy, best s-term polynomial approximation and hidden anisotropy

3.1. Holomorphy

We start by recalling the definition of holomorphy and of holomorphic extension for Hilbert-valued
functions. The definition of holomorphy employed here is based on the notion of Gateaux partial
derivative, although other equivalent definitions are possible (see (Hervé, 2011, Chapter 2)). The
holomorphic extension assumption has played a crucial role in the context of parametric PDEs since
the seminal work Cohen et al. (2011); see also Cohen and DeVore (2015) and references therein.

Definition 1 (Holomorphy) Let O ⊆ Cd be an open set and V be a separable Hilbert space. A
function f : O → V is holomorphic in O if and only if it is holomorphic with respect to each
variable in O. Equivalently, if and only if the following limit exists for any z ∈ O and any j ∈ [d]:

lim
h∈C
h→0

f(z + hej)− f(z)

h
∈ V, where ej = (δij)

d
i=1.

8

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

Definition 2 (Holomorphic extension) Let V be a Hilbert space. The function f : U → V is
holomorphic in U ⊆ O ⊆ Cd if it has a holomorphic extension to O, i.e. there is a f̃ : O → V that
is holomorphic in O with f̃ |U = f . In this case, we also define ‖f‖L∞(O;V) := ‖f̃‖L∞(O;V).

We are interested in approximating Hilbert-valued functions f : U → V that admit a holo-
morphic extension to suitable open neighborhoods of U . Specifically, regions defined by Bern-
stein (poly)ellipses. When d = 1 the Bernstein ellipse of parameter ρ > 1 is defined by Eρ ={

1
2(z + z−1) : z ∈ C, 1 ≤ |z| ≤ ρ

}
⊂ C. This is an ellipse with±1 as its foci and major and minor

semi-axis lengths given by 1
2(ρ± ρ−1). For d ≥ 1, given ρ = (ρj)

d
j=1 ∈ Rd with ρ > 1, we define

the Bernstein polyellipse as
Eρ = Eρ1 × · · · × Eρd ⊂ Cd.

Further, we denote the class of unit-norm, Hilbert-valued functions that are holomorphic in Eρ as

B(ρ) =
{
f : U → V, f holomorphic in Eρ, ‖f‖L∞(Eρ;V) ≤ 1

}
.

Note that the parameter ρ dictates the smoothness of f in the different coordinate directions. The
larger ρj , the smoother f is in the jth variable yj . We say that f has anisotropic dependence on
the variables y if the ρj are potentially nonequal and that the anisotropy is hidden if the ρj’s are
unknown.

3.2. Polynomial approximation of holomorphic functions

The approximation theory of functions that are holomorphic in Bernstein ellipses is a classical
topic, especially in d = 1 dimensions. However, polynomial approximations have also proved to be
extremely effective tools in d� 1 dimensions as well.

Let {Ψν}ν∈N0 be the univariate orthonormal Legendre polynomial basis of L2
%([−1, 1]) (see, for

example, Szegö (1975)). Let f ∈ B(ρ) for some ρ > 1 and consider its expansion

f =
∑
ν∈N0

cνΨν , cν :=

∫ 1

−1
f(y)Ψν(y)2−1 dy ∈ V,

where the coefficients {cν}ν∈N0 are elements of V . It is well-known that the truncated expansion
fs =

∑s−1
ν=0 cνΨν converges to f exponentially-fast with error O(

√
sρ−s) in L2

%([−1, 1];V). 1

The situation becomes more complicated in d ≥ 2 dimensions. Let {Ψν}ν∈Nd0 be the tensor
Legendre polynomial basis, defined by Ψν = Ψν1 ⊗ · · · ⊗Ψνd for ν = (νk)

d
k=1 ∈ Nd0. Then, once

more, we can then write f ∈ B(ρ) as

f =
∑
ν∈Nd0

cνΨν , cν :=

∫
U
f(y)Ψν(y)2−d dy ∈ V. (10)

One aims to construct a polynomial approximation by selecting s terms from this expansion, i.e.

f ≈ fS =
∑
ν∈S

cνΨν ,

1. In the scalar-valued case, i.e. V = R, this is due to classical estimates on the Legendre coefficients (see, e.g., (Davis,
1975, Theorem 12.4.7)). A simple adaptation of this argument leads to the same result in the Hilbert-valued case.

9

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

where S ⊂ Nd0 is a multi-index set with |S| = s. Unfortunately, standard, isotropic choices for
S such as the (isotropic) total degree set S = {ν = (νk)

d
k=1 : ν1 + · · · + νd ≤ n} generally

lead to less favourable convergence rates in terms of s. In particular, when the dependence of f on
its variables y is anisotropic, the index set S may include many indices that correspond to small-
norm coefficients cν . This motivates an alternative approach based on best s-term approximation,
in which a polynomial approximation is formed by selecting the indices in (10) corresponding to
the largest s of the coefficient norms ‖cν‖V ; see DeVore (1998); Cohen et al. (2010).

Best s-term approximation is particularly well suited to approximating holomorphic functions
with anisotropic dependence. If f ∈ B(ρ) then it is known that, for any ε > 0,

‖f − fs‖L2
%(U ;V) ≤ exp

− 1

d+ 1

(
sd!
∏d
j=1 log(ρj)

1 + ε

)1/d
 , ∀s ≥ s̄ = s̄(d, ε,ρ), (11)

where fs is the best s-term polynomial approximation to f (see Theorem 10). This shows that the
best s-term approximation error converges exponentially-fast in s1/d without any prior knowledge
of the ρj’s. In particular, as the right-hand side of (11) depends on the product of the logarithms of
the ρj’s, it is completely independent of their ordering. We note that, although a closed formula for
s̄(d, ε,ρ) in (11) is not available, an inspection of the proof of Theorem 10 (see Appendix B.3) and
of (Opschoor et al., 2019, Theorem 3.5) reveals a constructive characterization of this quantity.

It is notable that estimates such as (11) say nothing about how to actually construct the approx-
imation fs from sample values. Nevertheless, we consider the rate (11) as the benchmark against
which we compare the developed DNN procedure.

Remark 3 There are various results on the convergence rate of best s-term polynomial approxima-
tion of a holomorphic function. Algebraic rates of convergence can be found in, for instance, Cohen
et al. (2011); Cohen and DeVore (2015). These are attractive since they also hold when d = ∞,
thus theoretically permitting the approximation of functions of infinitely-many variables. However,
in finite dimensions the constants in these error bounds may be large Tran et al. (2017). The bound
(11) is based on (Cohen and DeVore, 2015, Sec. 3.9) and Opschoor et al. (2019). However, the
scaling 1/(d+ 1) is not sharp. For quasi-optimal error bounds, see Beck et al. (2014, 2012); Tran
et al. (2017). The results of Tran et al. (2017) are asymptotically sharp as s → ∞. The challenge,
however, for our purposes is that they do not generally lead to an approximation in a so-called
lower set, unlike (11). This is an important component of our subsequent analysis (See §B.3).

3.3. Hidden anisotropy

Motivated by this discussion, we now define the following class of functions:

Definition 4 Let d ≥ 1, γ > 0 and ε > 0. Then HA = HA(γ, ε, d) is the set of Hilbert-valued
functions f : U → V that have a holomorphic extension to a Bernstein polyellipse Eρ and satisfy
‖f‖L∞(Eρ;V) ≤ 1, and where the parameters ρ = (ρj)

d
j=1 satisfy

1

d+ 1

(
d!
∏d
j=1 log(ρj)

1 + ε

)1/d

≥ γ. (12)

10

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

Observe that, thanks to (11), for this class of functions we have

‖f − fs‖L2
%(U ;V) ≤ exp(−γs1/d), ∀f ∈ HA(γ, ε, d), ∀s ≥ s̄(d, ε,ρ). (13)

It is this rate we seek to obtain with the DNN approximation, with some polynomial scaling between
m and s. Specifically, we consider the following problem:

Problem 2 Devise a DNN architecture and training procedure that solves Problem 1 and for which
the error decays exponentially fast for all f ∈ HA(γ, ε, d).

4. Main result

In this section we present our main result that resolves Problem 2. Its proof can be found in Ap-
pendix B.4. Given m ≥ 1, 0 < ε < 1 and d ≥ 1, we first define L = L(m, d, ε) as

L(m, d, ε) := c0 · log(2m) ·
(
log(2m) ·min{log(2m) + d, log(2m) · log(2d)}+ log(ε−1)

)
, (14)

where c0 > 0 is a universal constant, and

m̃ = m̃(m, d, ε) := m/L. (15)

Theorem 5 There are universal constants c0, c1, c2, c3 > 0 such that the following holds. Let
d ≥ 1, 0 < ε, ε < 1, γ > 0, m ≥ 1 and m̃ be as in (15). Let y1, . . . ,ym be drawn independently
from the uniform measure (3) on U . Then there is (a) a class of neural networks N with ReLU
activation functions, N0 = d, NL+2 = K,

depth(N) ≤ c1 · (1 + d log(d)) · (1 + log(m̃)) ·
(

(m̃/2d)1/2 + log(∆) + γm̃1/(2d)
)
,

size(N) ≤ c2 · d
(
d(m̃/2d) +

(
(m̃/2d)1/2 + d ·∆

)
·
(

log(m̃) + log(∆) + γm̃1/(2d)
))

+K ·∆,

and param(N) ≤ K ·∆, where

∆ := min

{
2m̃3/22d/2, e2(m̃/2d)1+log(d)/(2 log(2)),

m̃1/2 (log(m̃) + (d+ 1) log(2))d−1

2d/2−1(d− 1)!

}
,

(with the convention that 0! = 1); (b) a regularization function J : N → [0,∞) equivalent to a
certain norm of the trainable parameters; and (c) a choice of regularization parameter λ involving
only m̃ and d; such that the following holds with probability at least 1− ε. For all f ∈ HA(γ, ε, d)
with noisy evaluations di = f(yi) + ni ∈ Vh as in (8), every minimizer Φ̂ of the training problem

min
Φ∈N

√√√√ 1

m

m∑
i=1

‖fΦ(yi)− di‖2V + λJ (Φ), (16)

satisfies
‖f − fΦ‖L2

%(U ;V) ≤ c3 (E1 + E2 + E3) , (17)

for m̃ ≥ 2ds̄2, where s̄ = s̄(d, ε,ρ) is as in (13), fΦ is as in (7) and, for e = 1√
m

(ni)
m
i=1,

E1 = exp(−γm̃1/(2d)/
√

2), E2 = ‖e‖V,2, E3 = ‖f − Ph(f)‖L∞(U ;V). (18)

11

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

This result asserts that there is a DNN architecture and training procedure with an explicit error
bound comprising three terms. First, the approximation error E1. This quantifies how well f
is approximated by a DNN in terms of the number of samples m. It is exponentially small in
m1/(2d), up to log terms. Furthermore, the log term L = L(m, d, ε) effectively behaves roughly
like log3(m) log(d), i.e. polylogarithmic in m but only logarithmic in d. The second term is the
measurement error E2 = ‖e‖V,2. This is, as discussed, the error in the pointwise evaluations of f
at the points yi. Note that we do not assume e stems from any random distribution – the term E2

implies that the noise can be adversarial, which is generally suitable in problems such as parametric
PDEs, where the noise stems from the (deterministic) error incurred in the numerical PDE solve.
The third term is the physical discretization error E3. Recall that we cannot work directly in the
infinite-dimensional space V . This term accounts for the error induced by working in Vh instead.
Since the projection Ph(f)(y) is the best approximation to f(y) ∈ V from Vh in the V-norm, the
term E3 is optimal, up to a minor switch from the L2

%(U ;V)-norm on the left-hand side of (17) to
the L∞(U ;V)-norm on its right-hand side.

It is notable that the approximation error E1 achieves a similar exponential rate of decay as
the best s-term polynomial approximation error bound (13), except with s replaced by

√
m̃ and

an additional factor of 1/
√

2. Note that the former translates into m̃ ∝ s2, which is precisely the
quadratic sample complexity that arises when computing s-sparse polynomial approximations from
uniformly-distributed samples via compressed sensing Chkifa et al. (2018); Adcock et al. (2017).
Hence, the presence of the term E1 implies that the DNN procedure performs as well as current
best-in-class polynomial approximation schemes based on compressed sensing.

As mentioned, the proof of Theorem 5 is in fact based on re-interpreting such a polynomial-
based compressed sensing procedure as a DNN training problem. This is done using a DNN to
approximate the Legendre polynomial basis (using an approach due to Opschoor et al. (2019)), and
therefore results in a class of DNN architectures N in which only the weights in the final layer are
trained, the remainder being fixed. As shown in step 2 of the proof of Theorem 5, the regularization
J is a certain weighted `2,1-norm over the weight matrix in the final layer. Note that the training
problem may also seem unusual, since it involves fitting in the continuous ‖·‖V -norm. However, it
can be reformulated as a discrete norm. Let G = (〈ϕj , ϕk〉V)Kj,k=1 be the Gram matrix of the ba-

sis {ϕk}Kk=1 of Vh. Then (16) is equivalent to the problem minΦ∈N

√
1
m

∑m
i=1 ‖Φ(yi)− di‖2G,2 +

λJ (Φ), where di = (dik)
K
k=1 ∈ RK and ‖c‖G,2 =

√
〈Gc, c〉, which involves a standard (weighted)

`2-norm over RK . However, we also note that the loss function in (16) is is rather different from the
standard `2-loss used commonly in DL, since the data fidelity term is not squared. The reason for
this, as discussed in §B.2, is to ensure property (c). If the loss term were squared, the optimal choice
regularization parameter λ would depend on the unknown error terms E1, E2 and E3. It is rather
remarkable that forgoing the squaring leads to such a desirable property for λ. We are not aware of
any existing results in DNN training where the regularization parameter can be set optimally in a
function-independent way.

5. Numerical exploration

As commented previously, since Theorem 5 emulates an existing polynomial-based method with
a DNN, the resulting training procedure is not expected to give better results in practice. We now
present preliminary experiments on the efficiency of training DNNs for approximating solutions to

12

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

parametric PDEs from limited data. A more comprehensive study of the efficacy of DL techniques
for problems in computational UQ will be presented in an upcoming work. Unlike in Theorem 5, we
consider fully-connected DNNs trained using standard (unregularized) loss functions. In addition,
differing from previous works – including Geist et al. (2020), which focused on the scaling of
accuracy with the dimension d in the presence of large amounts of training data – in this study
we investigate the trade-off between accuracy and the number of samples m. We also include a
comparison to the best-in-class SCS scheme Dexter et al. (2019) (see §1.3 and §A.4).

5.1. Setup

We approximate a parametric elliptic PDE defined over the spatial domain Ω = (0, 1)2 and paramet-
ric domain U = [−1, 1]d with the uniform probability measure (3). Specifically, given g ∈ L2(Ω)
we seek a function u : Ω× U → R satisfying

−∇ · (a(x,y)∇u(x,y)) = g(x), ∀x ∈ Ω, y ∈ U , u(x,y) = 0, ∀x ∈ ∂Ω, y ∈ U . (19)

We choose the function g to be independent of y for simplicity. We use a finite element method for
spatial discretization, based on a triangulation with K = 1089 nodes and meshsize h =

√
2/32.

In this study we consider only the error in approximating the parametric PDE, therefore we use the
same finite element discretization in generating all of the sample training and testing data, and also
in discretization and solution of the SCS problem. See §A.1 for further details.

The training data for the DNNs and for the SCS method is generated by solving (19) at a
set of uniform random points {yi}mmax

i=1 ⊂ U , yielding a set of solutions {uh(·,yi)}mmax
i=1 , where

uh(·,y) ∈ Vh is the computed solution of (19). Here we examine both the efficiency of DL tech-
niques on fixed subsets of training data of size m ≤ mmax and the effect of increasing m up to
mmax on the accuracy of the approximations. We also examine the average performance of both
methods, running multiple trials training the DNNs and solving the SCS problem given different
sets of uniform random points generated with the trial number as the seed. The testing data is gen-
erated in the same way by evaluating (19) at a set of points {yi}mtest

i=1 . However instead of using
random points to test, we use a deterministic high-order sparse grid stochastic collocation method
to generate the set of testing points and data {uh(·,yi)}mtest

i=1 (see Nobile et al. (2008)). The sparse
grid method is selected due to the superior convergence over standard Monte Carlo integration in
evaluating the global testing error metrics, chosen here to be the Bochner norms L2

%(U ;L2(Ω)) and
L2
%(U ;H1

0 (Ω)) (see (4)). See §A.2 for further details.
The DNN strategy is based on §2.2. For y ∈ U , we define the Finite Element (FE) and DNN

approximations by

uh(y) =

K∑
k=1

ck(y)ϕk and uΦ,h(y) =

K∑
k=1

(Φ(y))kϕk, Φ : Rd → RK , (20)

respectively. We consider several types of fully-connected DNN architectures with input dimension
N0 = d, output dimension NL+2 = K, and constant hidden-layer widths, i.e. N1 = N2 = . . . =
NL+1 = M for some M ∈ N. We follow the convention from Adcock and Dexter (2021) of
referring to a DNN with activation function σ, L hidden layers and M nodes per hidden layer
as a σ L × M DNN. In this study we focus on either the tanh, ρ(x) = tanh(x), the ReLU,

13

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

ρ(x) = max{x, 0}, or the Leaky-ReLU, ρ(x) = max{x, 0.2x}, activation functions.2 For details
on the training approach, see §A.3.

5.2. Effective architectures and loss functions and efficiency of training

We first study the performance of the DL approach based on two different loss functions. The first
loss function is the well-known mean square error loss, given in terms of the coefficients (20) as

MSE(y) :=
1

m

m∑
i=1

K∑
k=1

(ck(yi)− (Φ(yi))k)
2. (21)

On the other hand, motivated by the recent work (Geist et al., 2020) we also consider the squared
V-norm loss function, which incorporates information about the complexity of the domain in the
training procedure. This is defined by

MVNSE(y) :=
1

m

m∑
i=1

‖uh(yi)− uΦ,h(yi)‖2V . (22)

In Figure 1, we study the efficacy of minimizing either (21) or (22) given solution data from problem
(19) with a simple affine coefficient given by

a(x,y) = 3 + x1y1 + x2y2. (23)

We make several observations. First, when comparing the training time, identical networks trained
with loss (22) take longer to complete 50,000 epochs of training than those trained with loss (21),
and the overall time scales poorly with increasing training set size m and increasing number of
FE basis elements K for both loss functions. Second, DNN architectures trained with loss func-
tion (22) underperform identical architectures trained with the MSE loss in both testing metrics.
However, it is interesting that the difference is largest in the case of the L2

%(U ;L2(Ω)) testing error,
where the best-performing tanh, ReLU, and Leaky-ReLU 5× 50 DNNs trained with the MSE loss
achieved order 10−3 error. Third, we note the non-monotonic decrease in training error for both loss
functions, and stagnation in error of some of the larger networks. Figure 2 displays a visualization
comparing solutions output by the DNN at a fixed y both early in the training and with a much
improved result after achieving order 10−6 error in the MSE loss.

5.3. Sample complexity of training

In this section we run a large-scale study of the average testing errors and training times over a
range of 10 trials, with increasing number of training samples m up to mmax = 675, and testing
with a sparse grid quadrature rule with mtest = 1861 testing points. For these experiments, we
consider a modification of the example from Nobile et al. (2008) of a diffusion coefficient with

2. As noted in Geist et al. (2020), the Leaky-ReLU can help avoid the occurrence of ‘dead neurons’ in training. Further,
(Geist et al., 2020, Remark 3.3) implies that theoretical guarantees such as Theorem 5 also hold if the ReLU is
replaced by the Leaky-ReLU, up to a minor change in the architecture of the family of DNNs N .

14

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

0 10 20 30 40 50

10-4

10-3

10-2

10-1

100

0 10 20 30 40 50
10-3

10-2

10-1

100

101

102

0 50 100 150 200 250
10-10

10-5

100

105

0 10 20 30 40 50
100

101

102

103

Figure 1: Comparison of (top-left) testing error in L2
%(U ;L2(Ω)), (top-right) testing error in

L2
%(U ;H1

0 (Ω)), and (bottom-left) training error for a variety of DNNs trained with MSE
loss function (21) and MVNSE loss (22) on m = 400 samples, and (bottom-right) train-
ing time of a tanh 5× 50 DNN with both loss functions and a range of samples.

Figure 2: Prediction for uh(x,y) from a tanh 5 × 50 DNN at y = [0.995184, 0]> (left) after
2 epochs of Adam (MSE 6.4255) and (middle) after training for 2045 epochs (MSE
4.879·10−7), and (right) the reference FE solution. At this y, ‖uh(y)−uΦ,h(y)‖L2(Ω) =
8.417 · 10−4 and ‖uh(y)− uΦ,h(y)‖H1(Ω) = 2.315 · 10−2.

one-dimensional (layered) spatial dependence given by

a(x,y) = exp

(
1 + y1

(√
πβ

2

)1/2

+

d∑
i=2

ζi ϑi(x) yi

)
(24)

ζi := (
√
πβ)1/2 exp

(
−
(⌊

i
2

⌋
πβ
)2

8

)
, ϑi(x) :=

{
sin
(⌊

i
2

⌋
πx1/βp

)
, if i is even,

cos
(⌊

i
2

⌋
πx1/βp

)
, if i is odd.

.

15

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

100 200 300 400 500 600 700

10-3

10-2

10-1

100

100 200 300 400 500 600 700

10-1

100

101

100 200 300 400 500 600 700

102

103

Figure 3: Comparison of average testing errors in (left)L2
%(U ;L2(Ω)) and (middle)L2

%(U ;H1
0 (Ω)),

and (right) average training times of the SCS method and various DNN architectures in
solving problem (19) with coefficient (24) in d = 30 dimension.

Here we let βc = 1/8, and βp = max{1, 2βc}, β = βc/βp. We consider this problem with
parameter dimension d = 30.

Figure 3 displays the result solving problem (19) with coefficient (24) with SCS and a variety of
DNN architectures. For the SCS method, we use the Legendre basis and hyperbolic cross of order
p = 6 with cardinality N = 1486. The DNN architectures have depth parameter L and number of
hidden layer nodes M chosen so that the ratio L/M = 0.1. Due to the non-monotonic decrease
in error during training, in this work we employ checkpointing to ensure the parameters achieving
the lowest loss are saved and later reloaded for testing, as described in Section A.3. In testing we
observe competitive performance using DNNs with the ReLU and Leaky-ReLU activation function.
We also observe superior performance over SCS and ReLU and Leaky-ReLU DNNs using DNNs
with tanh activation function, with such networks achieving testing errors on average approximately
3.2 times lower in the L2

%(U ;L2(Ω)) error and 2.15 times lower in the L2
%(U ;H1

0 (Ω)) error than the
SCS method given 675 training samples. We also include a comparison of the average training time
of the SCS and DNN approaches. While the average times are overall quite similar between the
SCS method and training the DNNs, we note that the DNNs are trained on a GPU with accelerated
matrix-vector product operations. Therefore this comparison does not provide a good estimate of
computational complexity. We leave a study of the computational efficiency of DL techniques for
such problems to a future work.

6. Conclusion

In this paper, we first established a novel theoretical result, Theorem 5, asserting the existence of
a DNN architecture and training procedure that performs as well as current best-in-class schemes.
While this theorem does not explain the success of standard architectures and training, it does high-
light the potential of DNNs for holomorphic function approximation. The preliminary numerical
results shown above also indicate this promise. The architecture and training differ from that de-
scribed in Theorem 5, since the networks are much shallower and the loss function simpler. Yet,
through a suitable choice of architecture and optimizer, we are not only able to match such perfor-
mance of current best-in-class schemes using a simpler setup, but also outperform it in this example.

16

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

These preliminary results indicate practical promise of the DNN approach, as well as the need for
further improvements to the theory so as to address more realistic training scenarios. Results of a
more comprehensive study will be reported in a future work.

References

B. Adcock. Infinite-dimensional compressed sensing and function interpolation. Found. Comput.
Math., 18(3):661–701, 2018.

B. Adcock and N. Dexter. The gap between theory and practice in function approximation with
deep neural networks. SIAM J. Math. Data Sci. (to appear), 2021.

B. Adcock and A. C. Hansen. Compressive Imaging: Structure, Sampling, Learning. Cambridge
University Press (in press), www.compressiveimagingbook.com, Cambridge, 2021.

B. Adcock, S. Brugiapaglia, and C. G. Webster. Compressed sensing approaches for polynomial
approximation of high-dimensional functions. In Holger Boche, Giuseppe Caire, Robert Calder-
bank, Maximilian März, Gitta Kutyniok, and Rudolf Mathar, editors, Compressed Sensing and
its Applications: Second International MATHEON Conference 2015, Applied and Numerical
Harmonic Analysis, pages 93–124. Birkhäuser, Cham, 2017.

B. Adcock, A. Bao, and S. Brugiapaglia. Correcting for unknown errors in sparse high-dimensional
function approximation. Numer. Math., 142(3):667–711, 2019.

S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, and G. N. Wells. The FEniCS Project Version 1.5. Archive of Numerical Software, 3
(100), 2015.

F. Bach. Breaking the Curse of Dimensionality with Convex Neural Networks. J. Mach. Learn.
Res., 18(19):1–53, 2017.

C. Beck, A. Jentzen, and B. Kuckuck. Full error analysis for the training of deep neural networks.
arXiv:1910.00121, 2019.

J. Beck, R. Tempone, F. Nobile, and L. Tamellni. On the optimal polynomial approximation of
stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci., 22(9):
1250023, 2012.

J. Beck, F. Nobile, L. Tamellini, and R. Tempone. Convergence of quasi-optimal stochastic galerkin
methods for a class of pdes with random coefficients. Comput. Math. Appl., 67(4):732–751, 2014.

J. Berg and K. Nyström. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing, 317:28 – 41, 2018.

J. Berner, P. Grohs, and A. Jentzen. Analysis of the Generalization Error: Empirical Risk Mini-
mization over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the
Numerical Approximation of Black–Scholes Partial Differential Equations. SIAM J. Math. Data
Sci., 2(3):631–657, 2020.

17

www.compressiveimagingbook.com

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

A. Chernov and D. Dũng. New explicit-in-dimension estimates for the cardinality of high-
dimensional hyperbolic crosses and approximation of functions having mixed smoothness. J.
Complexity, 32:92–121, 2016.

A. Chkifa, A. Cohen, R. DeVore, and C. Schwab. Sparse adaptive Taylor approximation algorithms
for parametric and stochastic elliptic PDEs. Modél. Math. Anal. Numér., 47(1):253–280, 2013.

A. Chkifa, A. Cohen, and C. Schwab. High-dimensional adaptive sparse polynomial interpolation
and applications to parametric PDEs. Found. Comput. Math., 14(4):601–633, 2014.

A. Chkifa, A. Cohen, and C. Schwab. Breaking the curse of dimensionality in sparse polynomial
approximation of parametric PDEs. J. Math. Pures Appl., 103(2):400–428, 2015.

A. Chkifa, N. Dexter, H. Tran, and C. G. Webster. Polynomial approximation via compressed
sensing of high-dimensional functions on lower sets. Math. Comp., 87(311):1415–1450, 2018.
doi: https://doi.org/10.1090/mcom/3272.

A. Cohen and R. A. DeVore. Approximation of high-dimensional parametric PDEs. Acta Numer.,
24:1–159, 2015. doi: 10.1017/S0962492915000033.

A. Cohen and G. Migliorati. Multivariate approximation in downward closed polynomial spaces. In
Josef Dick, Frances Y. Kuo, and Henryk Woźniakowski, editors, Contemporary Computational
Mathematics – A Celebration of the 80th Birthday of Ian Sloan, pages 233–282. Springer, Cham,
2018.

A. Cohen, R. A. DeVore, and C. Schwab. Convergence rates of best N -term Galerkin approxima-
tions for a class of elliptic sPDEs. Foundations of Computational Mathematics, 10(6):615–646,
2010.

A. Cohen, R. DeVore, and C. Schwab. Analytic regularity and polynomial approximation of para-
metric and stochastic elliptic PDE’s. Analysis and Applications, 9(01):11–47, 2011.

G. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Math. Control Signals
Systems, 2(4):303–314, 1989.

E. C. Cyr, M. A. Gulian, R. G. Patel, M. Perego, and N. A. Trask. Robust training and initialization
of deep neural networks: An adaptive basis viewpoint. In Jianfeng Lu and Rachel Ward, editors,
Proceedings of The First Mathematical and Scientific Machine Learning Conference, volume 107
of Proceedings of Machine Learning Research, pages 512–536, Princeton University, Princeton,
NJ, USA, 2020. PMLR.

D. Dũng. Private communication, 2020.

N. Dal Santo, S. Deparis, and L. Pegolotti. Data driven approximation of parametrized PDEs by
reduced basis and neural networks. J. Comput. Phys., 416:109550, 2020.

P. J. Davis. Interpolation and approximation. Courier Corporation, 1975.

J. Daws and C. G. Webster. A Polynomial-Based Approach for Architectural Design and Learning
with Deep Neural Networks. arXiv:1905.10457, 2019a.

18

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

J. Daws and C. G. Webster. Analysis of Deep Neural Networks with Quasi-optimal polynomial
approximation rates. arXiv:1912.02302, 107(1):1–13, 2019b.

A. Dereventsov, A. Petrosyan, and C. G. Webster. Greedy Shallow Networks: A New Approach for
Constructing and Training Neural Networks. arXiv:1905.10409, 2019.

R. A. DeVore. Nonlinear approximation. Acta Numer., 7:51–150, 1998.

N. Dexter, H. Tran, and C. Webster. A mixed `1 regularization approach for sparse simultaneous
approximation of parameterized PDEs. ESAIM Math. Model. Numer. Anal., 53:2025–2045, 2019.

A. Doostan and H. Owhadi. A non-adapted sparse approximation of PDEs with stochastic inputs.
J. Comput. Phys., 230(8):3015–3034, 2011.

W. E and Wang. Q. Exponential Convergence of the Deep Neural Network Approximation for
Analytic Functions. arXiv:1807.00297, 2018.

W. E and B. Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving
Variational Problems. Commun. Math. Stat., 6(1):1–14, 2018.

W. E, C. Ma, and L. Wu. Barron Spaces and the Compositional Function Spaces for Neural Network
Models. arXiv:1906.08039, 2019.

F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals, S. Kearnes,
P. F. Riley, and O. A. von Lilienfeld. Prediction Errors of Molecular Machine Learning Models
Lower than Hybrid DFT Error. Journal of Chemical Theory and Computation, 13(11):5255–
5264, 2017.

Daria Fokina and Ivan Oseledets. Growing axons: greedy learning of neural networks with appli-
cation to function approximation. arXiv:1910.12686, pages 1–17, 2019.

M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok. Numerical solution of the para-
metric diffusion equation by deep neural networks. arXiv:2004.12131, 2020.

C. J. Gittelson. An adaptive stochastic Galerkin method for random elliptic operators. Math. Comp.,
82(283):1515–1541, 2013.

P. Grohs, F. Hornung, A. Jentzen, and P. Von Wurstemberger. A proof that artificial neural networks
overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial
differential equations. arXiv:1809.02362, 2018.

P. Grohs, D. Perekrestenko, D. Elbrächter, and H. Bölcskei. Deep neural network approximation
theory. arXiv:1901.02220, 2019.

I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep ReLU neural
networks in W s,p norms. Analysis and Applications, 18(05):803–859, 2020. doi: 10.1142/
S0219530519410021.

M. D. Gunzburger, C. G. Webster, and G. Zhang. Stochastic finite element methods for partial
differential equations with random input data. Acta Numer., 23:521–650, 2014.

19

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for `1-minimization: methodology and
convergence. SIAM J. Optim., 19(3):1107–1130, 2008.

J. Hampton and A. Doostan. Compressive sampling of polynomial chaos expansions: convergence
analysis and sampling strategies. J. Comput. Phys., 280:363–386, 2015.

M. Hervé. Analyticity in infinite dimensional spaces, volume 10. Walter de Gruyter, 2011.

J. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Partial
Differential Equations. Springer Briefs in Mathematics. Springer, 2015.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approx-
imators. Neural Networks, 2(5):359–366, 1989. ISSN 08936080.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, K. Tunyasuvunakool, O. Ronneberger,
R. Bates, A. Zidek, A. Bridgland, C. Meyer, S. A. A. Kohl, A. Potapenko, A. J. Ballard, A. Cowie,
B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, M. Steinegger,
M. Pacholska, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis.
High Accuracy Protein Structure Prediction Using Deep Learning. Fourteenth Critical Assess-
ment of Techniques for Protein Structure Prediction (Abstract Book), 2020.

Y. Khoo, J. Lu, and L. Ying. Solving parametric PDE problems with artificial neural networks.
European J. Appl. Math. (in press), 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

T. Kühn, W. Sickel, and T. Ullrich. Approximation of mixed order Sobolev functions on the d-torus:
asymptotics, preasymptotics, and d-dependence. Constr. Approx., 42:353–398, 2015.

G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of deep neural net-
works and parametric PDEs. arXiv:1904.00377, 2020.

F. Laakmann and P. Petersen. Efficient approximation of solutions of parametric linear transport
equations by ReLU DNNs. arXiv:2001.11441, 2020.

J. Lagergren, J. T. Nardini, G. M. Lavigne, E. M. Rutter, and K. B. Flores. Learning partial differ-
ential equations for biological transport models from noisy spatiotemporal data. Proc. R. Soc. A,
476(2234):1–21, 2020.

M. Leshno, V. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a nonpoly-
nomial activation function can approximate any function. Neural Networks, 6(6):861–867, 1993.
doi: https://doi.org/10.1016/S0893-6080(05)80131-5.

B. Li, S. Tang, and H. Yu. Better approximations of high dimensional smooth functions by deep
neural networks with rectified power units. 1903.05858, 2019.

S. Liang and R. Srikant. Why deep neural networks for function approximation? arXiv:1610.04161,
2016.

A. Logg and G. N. Wells. DOLFIN: Automated Finite Element Computing. ACM Transactions on
Mathematical Software, 37(2), 2010. doi: 10.1145/1731022.1731030.

20

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep Network Approximation for Smooth Functions.
arXiv:2001.03040, pages 1–33, 2020.

Y. Lu, A. Zhong, Q. Li, and B. Dong. Beyond finite layer neural networks: bridging deep architec-
tures and numerical differential equations. arXiv:1710.10121, 2017.

G. Migliorati. Adaptive polynomial approximation by means of random discrete least squares.
In Assyr Abdulle, Simone Deparis, Daniel Kressner, Fabio Nobile, and Marco Picasso, editors,
Numerical Mathematics and Advanced Applications - ENUMATH 2013, pages 547–554, Cham,
2015. Springer.

H. Montanelli and Qiang. Du. New error bounds for deep relu networks using sparse grids. SIAM
Journal on Mathematics of Data Science, 1(1):78–92, 2019. doi: 10.1137/18M1189336.

H. Montanelli, H. Yang, and Q. Du. Deep ReLU networks overcome the curse of dimensionality
for bandlimited functions. 1903.00735, 2019.

F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM Journal on Numerical Analysis, 46(5):2309–
2345, 2008.

G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett. Deep Learning
Techniques for Inverse Problems in Imaging. arXiv:2005.06001, 2020.

J. A. A. Opschoor, Ch. Schwab, and J. Zech. Exponential ReLU DNN expression of holomorphic
maps in high dimension. SAM Research Report, 2019-35(35), 2019. doi: https://doi.org/10.1142/
S0219530518500203.

P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep
ReLU neural networks. Neural Netw., 108:296–330, 2018.

C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates for
generalized polynomial chaos expansions in UQ. Anal. Appl., 17(01):19–55, 2019.

Z. Shen, H. Yang, and S. Zhang. Deep network approximation characterized by number of neurons.
Communications in Computational Physics, 28(5):1768–1811, 2020.

M. Stoyanov. User manual: Tasmanian sparse grids. Technical Report ORNL/TM-2015/596, Oak
Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN, 2015.

M. Stoyanov, D. Lebrun-Grandie, J. Burkardt, and D. Munster. Tasmanian, 9 2013. URL https:
//github.com/ORNL/Tasmanian.

G. Szegö. Orthogonal Polynomials. American Mathematical Society, Providence, RI, 1975.

H. Tran, C. G. Webster, and G. Zhang. Analysis of quasi-optimal polynomial approximations for
parameterized PDEs with deterministic and stochastic coefficients. Numer. Math., pages 1–43,
2017.

M. Unser. A representer theorem for deep neural networks. J. Mach. Learn. Res., 20:1–28, 2019.

21

https://github.com/ORNL/Tasmanian
https://github.com/ORNL/Tasmanian

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

D. Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential
equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.

D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Netw., 94:103–
114, 2017.

D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks.
arXiv:1802.03620, 2018.

W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for `1-minimization
with applications to compressed sensing. SIAM J. Imaging Sci., 1(1):143–168, 2008.

G. Zhang, J. Zhang, and J. Hinkle. Learning nonlinear level sets for dimensionality reduction
in function approximation. In Advances in Neural Information Processing Systems 32, pages
13199–13208. Curran Associates, Inc., 2019.

Appendix A. Further details on the experiments

A.1. Finite element discretization

For the spatial discretization we rely on the finite element method as implemented by Dolfin (Logg
and Wells, 2010), and accessed through the python FEniCS project (Alnæs et al., 2015). We generate
a regular triangulation Th of Ω composed of triangles T of equal diameter hT = h. We consider
a conforming discretization, meaning a finite dimensional subspace Vh ⊂ V := H1

0 (Ω), where
Vh is chosen as the usual Lagrange Finite Elements (FE) of order k = 1. We rely on the Dolfin
UnitSquareMesh method to generate a mesh with 33 nodes per side, corresponding to a finite
element triangulation with K = 1089 nodes, 2048 elements and meshsize h =

√
2/32. See (Dexter

et al., 2019) for further implementation details.

A.2. Testing error

As discussed, rather than using random points to evaluate the test error, we use a high-order stochas-
tic collocation reference solution (see Nobile et al. (2008)) based on a deterministically-generated
quadrature rule. Specifically, we apply a Smolyak sparse-grid quadrature rule based on Clenshaw-
Curtis points to generate the testing data with the TASMANIAN software package Stoyanov et al.
(2013); Stoyanov (2015). In testing, we choose the level ` of the sparse grid rule such that mtest �
mmax. The testing error is recorded in the Bochner norms L2

%(U ;L2(Ω)) and L2
%(U ;H1

0 (Ω)) (see
(4)) and approximated as the square root of the result of the quadrature formulas

mtest∑
i=1

‖uh(yi)− ũh(yi)‖2L2(Ω)wi and
mtest∑
i=1

‖uh(yi)− ũh(yi)‖2H1
0 (Ω)wi,

respectively, where wi are the quadrature weights associated with the sparse grid rule and ũh are the
approximations obtained with either the DNNs or SCS. When testing multiple trials, we report the
average of the errors over all of the trials.

22

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

A.3. DNN training

We follow a similar training methodology to that of Adcock and Dexter (2021). All weights and
biases of the DNN are initialized as normal random variables with mean 0 and variance 0.01, with
the same seed 0 for each network. We perform calculations in single precision, using the Adam
optimizer Kingma and Ba (2014) with an exponentially-decaying learning rate and training for
50,000 epochs or until a stopping tolerance of 5 × 10−7 is met. We also employ checkpointing,
saving the DNN weights and biases once the error has decreased to 1/16th the error of the previous
checkpoint, and keeping the configuration which provided the lowest training error. Due to the large
size of the training data, we use a batch size of min{m, 256} for each training set of size m. As
discussed, the loss function is chosen either as the MSE loss (21) or the MVNSE loss (22).

A.4. The SCS method

The SCS method uses multivariate orthonormal Legendre polynomial approximation as described
in §3.2 and Appendix B.1, with the hyperbolic cross index set Λ = ΛHC

s−1 as in (26). Given the
measurement matrix A ∈ Rm×N from (27) and measurement vector b = 1√

m
(uh(yi))

m
i=1 ∈ Vmh ,

we solve the LASSO problem

min
z∈VNh

λ‖z‖V,1 + ‖Az − b‖2V,2, (25)

using a combination of Bregman iterations Yin et al. (2008) and fixed point continuation for ISTA
Hale et al. (2008). The full implementation details, including choice of parameters for the solvers
and value of λ, can be found in Dexter et al. (2019).

Appendix B. Proof of Theorem 5

B.1. Formulation as a vector recovery problem

Following §3.2, we first consider approximating f using the tensor Legendre polynomial basis
{Ψν}ν∈Nd0 . Write

f =
∑
ν∈Nd0

cνΨν , cν =

∫
U
f(y)Ψν(y)2−d dy ∈ V,

and let c = (cν)ν∈Nd0
∈ `2(Nd0;V) be the infinite vector of coefficients of f . Fix s ∈ N and let

Λ = ΛHC
s−1 =

{
ν = (νk)

d
k=1 ∈ Nd0 :

d∏
k=1

(νk + 1) ≤ s

}
⊂ Nd0, (26)

be the hyperbolic cross index set of index s− 1. Let N = |Λ| and ν1, . . . ,νN be an indexing of the
multi-indices in Λ and define the normalized measurement matrix.

A =

(
Ψνj (yi)√

m

)m,N
i,j=1

∈ Rm×N . (27)

23

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

We also define the the normalized measurement and error vectors

b =
1√
m

(f(yi) + ni)
m
i=1 ∈ V

m
h , and e =

1√
m

(ni)
m
i=1 ∈ Vm.

Now define
fΛ =

∑
ν∈Λ

cνΨν , (28)

as the truncated expansion of f based on the index set Λ and

cΛ = (cνj)
N
j=1 ∈ VN ,

as the finite vector of coefficients of f with indices in Λ. Then we have

AcΛ =
1√
m

(fΛ(yi))
m
i=1 =

1√
m

(f(yi))
m
i=1 −

1√
m

(f(yi)− fΛ(yi))
m
i=1 ,

and therefore
AcΛ + e+ e′ = b, (29)

where
e′ =

1√
m

(f(yi)− fΛ(yi))
m
i=1 .

Hence, the recovery of the coefficients cΛ of f is equivalent to solving the noisy linear system of
equations (29).

B.2. Hilbert-valued compressed sensing

To solve this, we consider techniques from Hilbert-valued compressed sensing Dexter et al. (2019).
In classical (scalar-valued) compressed sensing, one aims to solve (29) by finding a solution with
minimal `1-norm. In Hilbert-valued compressed sensing, we use the `1(Λ;V)-norm instead. Both
classical and Hilbert-valued compressed sensing are usually formulated as either a quadratically-
constrained basis pursuit or LASSO problem. However, we instead consider the Square Root LASSO
(SR-LASSO) problem

min
z∈VNh

λ‖z‖V,1 + ‖Az − b‖V,2, (30)

where λ > 0 is a parameter. This is based on ideas of Adcock et al. (2019). While the other
approaches are more common, they have the undesirable feature that the optimal choices for their
parameters (in the sense that they give the best error bounds) depend on the magnitude of the terms e
and e′. These terms are unknown (in particular, they typically depend on f). Hence, they would not
give rise to a result such as Theorem 5, where the parameter choice is independent of f . Fortunately,
as shown in Adcock et al. (2019), the SR-LASSO (30) has such a desirable property.

The theory of Hilbert-valued compressed sensing has been developed in Dexter et al. (2019).
We recall several key definitions. The support of a Hilbert-valued vector x = (xi)

N
i=1 ∈ VN is

supp(x) = {i : ‖xi‖V 6= 0} ⊆ {1, . . . , N}.

A Hilbert-valued vector is s-sparse if

‖x‖V,0 := |supp(x)| ≤ s.

24

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

We write Σs ⊆ VN for the set of s-sparse Hilbert-valued vectors. For nonsparse vectors, we also
define the `p-norm best s-term approximation error as

σs(x)V,p = inf
z∈VN

{‖x− z‖V,p : z ∈ Σs}, x ∈ VN .

We now focus on properties of the matrix A that ensure recovery of approximately sparse vec-
tors via (30). To this end, we now define some additional notation. Given a set S ⊆ {1, . . . , N}
we write PS : VN → VN for the projection that, given a vector x ∈ VN , produces a vector PS(x)
whose ith entry is equal to xi if i ∈ S and zero otherwise.

Definition 6 The matrix A ∈ Rm×N satisfies the robust Null Space Property (rNSP) of order
1 ≤ s ≤ N over VN with constants 0 < ρ < 1 and τ > 0 if

‖PS(x)‖V,2 ≤
ρ‖PSc(x)‖V,1√

s
+ τ‖Ax‖V,2, ∀x ∈ VN ,

for any S ⊆ [N] with |S| ≤ s.

See (Dexter et al., 2019, Defn. 4.1). In (Dexter et al., 2019, Prop. 4.2) the authors show that the
rNSP is sufficient to provide an error bound for minimizers of the quadratically-constrained basis
pursuit problem. We need an analogous result for the SR-LASSO problem (30). The following
is a straightforward extension of (Adcock and Hansen, 2021, Thm. 6.4)3 from the scalar to the
Hilbert-valued case.

Lemma 7 Suppose that A ∈ Rm×N has the rNSP of order 1 ≤ s ≤ N with constants 0 < ρ < 1
and τ > 0. Let x ∈ VN , b = Ax+ e ∈ Vm and

λ ≤ C1

C2
√
s
,

where C1 = (3ρ+1)(ρ+1)
2(1−ρ) and C2 = (3ρ+5)τ

2(1−ρ) . Then every minimizer x̂ ∈ VN of the Hilbert-valued
SR-LASSO problem

min
z∈VN

λ‖z‖V,1 + ‖Az − b‖V,2,

satisfies

‖x̂− x‖V,2 ≤ 2C1
σs(x)V,1√

s
+

(
C1√
sλ

+ C2

)
‖e‖V,2.

Now we recall that a matrix A ∈ Rm×N satisfies the Restricted Isometry Property (RIP) of
order 1 ≤ s ≤ N with constant 0 < δs < 1 if δs is the smallest constant δ for which

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, ∀x ∈ RN , x s-sparse.

The following result connects the RIP and rNSP. It is based on a combination of (Dexter et al.,
2019, Prop 4.3) (which applies to the Hilbert-valued case) and (Adcock and Hansen, 2021, Lem.
5.17) (which gives explicit values for ρ and τ):

3. Chapter available online at www.compressiveimagingbook.com.

25

www.compressiveimagingbook.com

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

Lemma 8 Suppose that A ∈ Rm×N satisfies the RIP of order 2s with constant δ2s <
√

2 − 1.
ThenA satisfies the rNSP of order s over VN with constants ρ and τ given by

ρ =

√
2δ2s

1− δ2s
, τ =

√
1 + δ2s

1− δ2s
.

With this in mind, we end this section with a result asserting that conditions under which the
matrix defined in (27) satisfies the RIP:

Lemma 9 Let {Ψν}ν∈Nd0 be the orthonormal tensor Legendre polynomial basis of L2
%(U) and

y1, . . . ,ym be drawn independently from the uniform measure on U . Let 0 < δ, ε < 1 and suppose
that

m ≥ c · 2d · s2 · log(2s) ·
(
log(2s) ·min{log(s) + d, log(2d) · log(2s)}+ log(ε−1)

)
,

where c > 0 is a universal constant. Then, with probability at least 1 − ε, the matrix A defined in
satisfies the RIP of order s with constant δs ≤ 1/4.

Note that the choice of 1/4 here is arbitrary. Any value less than
√

2− 1 ≈ 0.41 will suffice.
Proof Theorem 2.2 of Chkifa et al. (2018) implies that any matrix of this form satisfies the RIP of
order s with constant δs ≤ 1/4, provided (after simplifying)

m & Θ2 · s · log(2Θ2s) ·max
{

log(2Θ2s log(2Θ2s)) · log(2N), log(2ε−1 log(2Θ2s))
}
, (31)

where N = |Λ| and Θ is defined by

Θ = max
ν∈Λ
‖Ψν‖L∞(U).

The Legendre polynomials attain their maxima at y = 1 (see, for example, Szegö (1975)) and,
due to the normalization with respect to the uniform measure, satisfy |Ψν(1)| =

∏d
k=1

√
2νk + 1.

Hence, since Λ is the hyperbolic cross of index s− 1 (recall (26)), we have

Θ2 ≤ max

{
d∏

k=1

(2νk + 1) :
d∏

k=1

(νk + 1) ≤ s

}
≤ 2ds.

Furthermore, it was also show in (Chkifa et al., 2018, Lem. 3.5) that Θ2 ≤ slog(3)/ log(2). Substitut-
ing this into the above expression and using the fact that

log(2Θ2s) ≤ log(2) + (log(3)/ log(2) + 1) log(s) . log(2s) ≤ 2s.

now shows that (31) is implied by

m & 2d · s2 · log(2s) ·
(
log(2s) · log(2N) + log(ε−1)

)
. (32)

Furthermore, it can be shown that

N ≤ min

{
2s34d, e2s2+log(d)/ log(2),

s(log(s) + d log(2))d−1

(d− 1)!

}
. (33)

26

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

The first and third bounds are due to Theorems 3.7 and 3.5 of Chernov and Dũng (2016) respectively
with values s = d, a = 1 and T = s (note that there is a small typo in the statement of Theorem
3.5 of Chernov and Dũng (2016): the denominator should read lnT − s ln(a− 1/2) + s− 1 Dũng
(2020)). The second bound is due to (Kühn et al., 2015, Thm. 4.9) (note that, although (Kühn et al.,
2015, Thm. 4.9) has the condition s ≤ 2d among its assumptions, an inspection of the proof reveals
that this assumption is not necessary). In particular,

log(2N) ≤ min
{

log(8s3) + d log(4), (2 + log(d)/ log(2)) log(s) + 2
}

. min{log(s) + d, log(2d) · log(2s)}.

Substituting this into (32) now gives the result.

B.3. Polynomial approximation error bounds for holomorphic functions

In order to establish exponential rates of convergence, we need the following result regarding es-
timates for the error of the best s-term polynomial approximation of a holomorphic function f .
For this next result, we recall that a set S ⊆ Nd0 is lower if whenever ν ∈ S then µ ∈ S for all
multi-indices µ satisfying µ ≤ ν.

Theorem 10 Let d ∈ N, f : U → V be holomorphic in a Bernstein polyellipse Eρ for some ρ > 1.
Then for every ε > 0 there exists s̄ = s̄(d, ε,ρ) such that, for every s ≥ s̄, there is a lower set
S ⊂ Nd0 of size |S| ≤ s for which

‖f − fS‖L2
%(U ;V) ≤ ‖f − fS‖L∞(U ;V) ≤

∑
ν /∈S

‖Ψν‖L∞(U)‖cν‖V

≤ ‖f‖L∞(Eρ;V) exp

− 1

d+ 1

(
sd!
∏d
j=1 log(ρj)

1 + ε

)1/d
 .

Furthermore, the same bound also applies to the coefficient error ‖c− cS‖1,V , where c = (cν)ν∈Nd0
is the sequence of coefficients of f as in (10) and cS is the infinite sequence with νth entry equal to
cν if ν ∈ S and zero otherwise.

Note that this result immediately implies (11). In fact, it is stronger, since it asserts an L∞-norm
bound, and shows that this can be achieved by a set that is also lower.
Proof The proof is mainly based on (Opschoor et al., 2019, Theorem 3.5). We start by proving the
theorem in the scalar-valued case, i.e. for V = R. Note that in this case the coefficients cν ∈ R.
Inspecting the proof of (Opschoor et al., 2019, Theorem 3.5) we see that, for any given τ ∈ (0, 1),
choosing the multi-index set as

S = Sτ :=
{
ν ∈ Nd0 : ρ−ν ≥ τ

}
,

where ρ−ν :=
∏d
j=1 ρ

−νj
j , leads to the upper bound∑

ν /∈Sτ

‖Ψν‖L∞(U)|cν | ≤ C ‖f‖L∞(Eρ) τ (1 + log(1/τ))2d, (34)

27

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

where C = C(d,ρ) > 0 is a constant depending only on d and ρ. (Specifically, using the notation
of (Opschoor et al., 2019, Theorem 3.5), (34) is obtained by letting ε = τ and k = 0.)

The next step is to convert the upper bound (34) into an exponential best s-term decay rate. Let
us consider the right-hand side of (34). For any α ∈ (0, 1), we have

lim
τ→0+

τ(1 + log(1/τ))2d

τα
= 0.

Therefore, for any α ∈ (0, 1), we choose the largest τ̄ = τ̄(α, d,ρ) ∈ (0, 1) such that

τ(1 + log(1/τ))2d ≤ τα

C exp
(
α
∑d

j=1 log(ρj)
) , ∀0 < τ ≤ τ̄ .

Combining the above inequality with (34) yields∑
ν /∈Sτ

‖Ψν‖L∞(U)|cν | ≤
τα

exp
(
α
∑d

j=1 log(ρj)
) , ∀0 < τ ≤ τ̄ . (35)

Now, following (Adcock and Dexter, 2021, Theorem 5.2), we establish a direct link between the
parameter τ ∈ (0, 1) and the sparsity s ∈ N. Indeed, for any s ≥ 2 there exists only one value
τ = τ(s) ∈ (0, 1) such that

s =

d∏
j=1

(
log(1/τ)

log(ρj)
+ 1

)
, (36)

and that
s

(d+ 1)d
≤ |Sτ(s)| ≤ s.

Observing that (36) defines a monotone decreasing relation between τ(s) and s, we can find the
minimum value s̄ = s̄(α, d,ρ) ∈ N with s̄ ≥ 2, such that for every s ≥ s̄, we have τ(s) ≤ τ̄ . In
this way, we have ∑

ν /∈Sτ(s)

‖Ψν‖L∞(U)|cν | ≤
τ(s)α

exp
(
α
∑d

j=1 log(ρj)
) , ∀s ≥ s̄.

Now, we observe that the cardinality of Sτ can be explicitly bounded as in (Opschoor et al., 2019,
Lemma 3.3) using a volumetric argument (note that Sτ corresponds to Λε in Opschoor et al. (2019)).
This cardinality bound can be written as

τ ≤ exp

(d∑
j=1

log(ρj)−
(
|Sτ |d!

d∏
j=1

log(ρj)

) 1
d
)
, ∀τ ∈ (0, 1).

Combining the above inequalities and recalling that |Sτ(s)| ≥ s/(d + 1)d, we obtain that, for any
s ≥ s̄, ∑

ν /∈Sτ(s)

‖Ψν‖L∞(U)|cν | ≤ exp

(
− α

(
|Sτ(s)|d!

d∏
j=1

log(ρj)

) 1
d
)

≤ exp

(
− α

d+ 1

(
sd!

d∏
j=1

log(ρj)

) 1
d
)
.

28

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

Finally, we let α = 1/(1 + ε)1/d and observe that ‖f − fS‖L2
%(U ;V) ≤ ‖f − fS‖L∞(U ;V) ≤∑

ν /∈S ‖Ψν‖L∞(U)|cν |. This concludes the proof in the case V = R.
This proof can be generalized to the Hilbert-valued case by replacing coefficients’ magnitude

|cν | with coefficients’ norm ‖cν‖V . With this modification, the analogous of (34) holds. Indeed,
the proof of (34) given in (Opschoor et al., 2019, Theorem 3.5) relies on coefficient bounds for
Legendre polynomials that hold in the Hilbert-valued case as well (see, e.g., (Cohen and DeVore,
2015, Lemma 3.15). The rest of the argument is identical to the scalar-valued case. We also observe
that the exponential bound holds for ‖c− cS‖1,V because ‖Ψν‖L∞(U) ≥ 1 for every ν ∈ Nd0. This
completes the proof.

B.4. Proof of Theorem 5

We are now ready to prove the main result. Our strategy is based on reformulating the above
compressed sensing formulation as a DNN training problem. We first require the following result
(Opschoor et al., 2019, Prop. 2.13):

Proposition 11 There exists a universal constant c > 0 such that the following holds. For every
finite subset Λ ⊂ Nd0 and every 0 < δ < 1 there exists a ReLU neural network ΦΛ,δ : Rd → R|Λ|
such that, if ΦΛ,δ = (Φν,δ)ν∈Λ, then

‖Ψν − Φν,δ‖L∞(U) ≤ δ, ∀ν ∈ Λ.

The depth and size of this network satisfy

depth(Φ) ≤ c · (1 + d log(d)) · (1 + log(m(Λ))) · (m(Λ) + log(δ−1)),

size(Φ) ≤ c · (d2m(Λ)2 + dm(Λ) log(δ−1)) + d2 · |Λ| · (1 + log(m(Λ)) + log(δ−1)),

where m(Λ) = maxν∈Λ ‖ν‖1 = maxν∈Λ
∑d

j=1 νj .

The general idea of the proof is to use Proposition 11 to approximate the matrix-vector multi-
plication Az – which is a polynomial evaluated at the sample points yi – as a neural network Φ
evaluated at the sample points, or equivalently, to approximate the matrix A, which is built from
polynomials, as a matrix A′ built from DNNs. We then use compressed sensing results applied to
A′ to establish an error bound. Since this process commits an error, we first require the following
result, which shows that the rNSP is robust to small matrix perturbations:

Lemma 12 Suppose that A ∈ Rm×N has the rNSP of order 1 ≤ s ≤ N over VN with constants
0 < ρ < 1 and τ > 0. LetA′ ∈ Rm×N be such that ‖A−A′‖2 ≤ δ, where

0 ≤ δ < 1− ρ
τ(
√
s+ 1)

.

ThenA′ has the rNSP of order s over VN with constants 0 < ρ′ < 1 and τ ′ > 0 given by

ρ′ =
ρ+ τδ

√
s

1− τδ
, τ ′ =

τ

1− τδ
.

29

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

This is a straightforward extension of (Adcock and Hansen, 2021, Lemma 8.5) from the scalar-
valued case to the Hilbert-valued case. We give the proof for completeness:
Proof Let z ∈ VN and a set S ∈ [N] such that |S| ≤ s. Then, since A has the rNSP,

‖PS(z)‖V,2 ≤
ρ√
s
‖PSc(z)‖V,1 + τ‖Az‖V,2

≤ ρ√
s
‖PSc(z)‖V,1 + τ‖A′z‖V,2 + τδ‖z‖V,2

≤ ρ√
s
‖PSc(z)‖V,1 + τ‖A′z‖V,2 + τδ‖PS(z)‖V,2 + τδ‖PSc(z)‖V,1.

Rearranging, we get

(1− τδ)‖PS(z)‖V,2 ≤
ρ+ τδ

√
s√

s
‖PSc(z)‖V,1 + τ‖A′z‖V,2.

The result now follows immediately from the assumptions on δ.

Proof (of Theorem 5) We divide the proof into several steps:

Step 1: We first define the class of DNNs N . Let m̃ be as in (15) and define

s :=

⌈(
m̃/2d

)1/2
⌉
. (37)

Now let Λ = ΛHC
s−1 and ΦΛ,δ be as in Proposition 11. We will choose δ in Step 5. Letting N = |Λ|,

we define the class N as

N =
{

Φ : Rd → RK : Φ(y) = Z>ΦΛ,δ(y), Z ∈ RN×K
}
.

Note that Z is the matrix of trainable parameters (it is the weight matrix in the output layer). We
will establish the size, depth and number of trainable parameters of this class (part (a) of Theorem
5) in Step 6.

Step 2: We next show that (16) can be reinterpreted as a SR-LASSO minimization problem. Anal-
ogously to (27), we define the matrixA′ as

A′ =

(
Φνj ,δ(yi)√

m

)m,N
i,j=1

∈ Rm×N ,

where Φν,δ is the νth component of ΦΛ,δ. Let Φ = Z>ΦΛ,δ ∈ N and fΦ be as in (7). Then

fΦ(yi) =
K∑
k=1

(Φ(yi))k ϕk =
√
m

K∑
k=1

(A′Z)ikϕk =
√
m
(
A′z

)
i
, (38)

where z = (zνj)
N
j=1 ∈ VNh is the Hilbert-valued vector with νj th component zνj =

∑K
k=1 Zjkϕk.

Hence (
1√
m
fΦ(yi)

)m
i=1

= A′z.

30

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

We now define the regularization function J as

J (Φ) = ‖z‖V,1, 4

We verify that J is equivalent to a norm over the trainable parameters Z (part (b) of Theorem 5).
Notice that

‖z‖V,1 =
N∑
j=1

‖zνj‖V =
N∑
j=1

‖
K∑
k=1

Zjkϕk‖V =
N∑
j=1

‖Z>ej‖G,2 = ‖G1/2Z>‖2,1

where ej ∈ RN is the jth coordinate vector, G1/2 is the unique positive definite square root of
G (defined in §4, along with the norm ‖ · ‖G,2) and ‖·‖2,1 is the matrix `2,1-norm, defined in §2.
Hence, J is equivalent to a norm over the trainable parameters.

Using this and (38), we now see that (16) can be expressed as the Hilbert-valued SR-LASSO
problem

min
z∈VNh

λ‖z‖V,1 + ‖A′z − b‖V,2, (39)

where b = 1√
m

(di)
m
i=1 ∈ Vmh . We will choose the value of λ in Step 4(ii). In particular, any

minimizer ĉ = (ĉν)ν∈Λ of (39) yields a minimizer Φ̂ of (16), given by

Φ̂ = Ĉ
>

ΦΛ,δ(y),

where Ĉ =
(
Ĉjk

)N,K
j,k=1

is such that

ĉνj =
K∑
k=1

Ĉjkϕk, ∀j = 1, . . . , N,

and vice versa. This completes Step 2.

Step 3: In the third step, we show that the matrix A′ has the rNSP of order s over VNh with proba-
bility at least 1− ε. Since m̃ ≥ 2ds̄2 ≥ 2d by assumption, we have

s ≤ 2(m̃/2d)1/2, (40)

and therefore s ≤ 2(m/(2dL))1/2 ≤ m, since L ≥ 1 for a suitable choice of the universal constant
c0. Hence, recalling (14) and (15), we see that

m = m̃ · L(m, d, ε) ≥ m̃ · L(s, d, ε) ≥ 2d · (s2/4) · L(s, d, ε),

and therefore

m & 2d · s2 · log(2s) ·
(
log(2s) ·min{log(2s) + d, log(2s) · log(2d)}+ log(ε−1)

)
.

4. Note that a DNN Φ is not, in general, uniquely defined by its parameters. In this case, this expression may fail to
define a well-defined map J . However, this is not a problem since we can define J (Φ) in this case as the infimum
of ‖z‖V,1 over all parameters Z that yield the same DNN Φ.

31

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

Lemma 9 (after replacing s by 2s) now implies that the matrix A satisfies the RIP of order 2s
with constant δ2s ≤ 1/4 and Lemma 8 implies that A satisfies the rNSP of order s over VNh with
constants

ρ =
√

2/3, τ = 2
√

5/3, (41)

with probability at least 1−ε. To show thatA′ satisfies the rNSP we use Lemma 12. We first bound
‖A−A′‖2. Let z ∈ RN . Then we observe that

‖(A−A′)z‖22 =
1

m

m∑
i=1

∣∣∣∣∣∑
ν∈Λ

(Ψν(yi)− Φν,δ(yi)) zν

∣∣∣∣∣
2

≤

(∑
ν∈Λ

‖Ψν(yi)− Φν,δ(yi)‖L∞(U)|zν |

)2

≤
∑
ν∈Λ

‖Ψν − Φν,δ‖2L∞(U)‖z‖
2
2 ≤ Nδ2‖z‖22,

by definition of Φν,δ. Hence
‖A−A′‖2 ≤

√
Nδ.

Now suppose that δ satisfies
√
Nδ ≤ 9− 4

√
2

2
√

5(3 + 4
√
s)
, (42)

(the choice of δ that will be made in Step 5 will ensure this condition). Using Lemma 12 and the
values (41) for ρ and τ we now see thatA′ has the rNSP of order s over VNh with constants

ρ′ =
3

4
, τ ′ =

√
5(3 + 4

√
s)

2(
√

2 + 3
√
s)
≤ 3
√

5

2
, (43)

with probability at least 1− ε.

Step 4: We now derive an error bound for f − fΦ̂, where Φ̂ is a minimizer of (16) and fΦ̂ is as in
(7). Throughout, we assume the results of the previous steps. In particular, the matrix A′ defined
in step 2 has the rNSP of order s (step 3). The problem (39), or equivalently (16), involves three
discretizations. Truncation of the infinite expansion via the index set Λ, discretization of the space
V via Vh and replacement of the polynomial functions by DNNs. First, given Φ̂ = Ĉ

>
ΦΛ,δ we let

ĉ be the corresponding minimizer of (39) and set

fΨ̂ =
∑
ν∈Λ

ĉνΨν .

We now proceed as follows:

‖f − fΦ̂‖L2
%(U ;V) ≤‖f − Ph(f)‖L2

%(U ;V) + ‖Ph(f)− Ph(fΛ)‖L2
%(U ;V)

+ ‖Ph(fΛ)− fΨ̂‖L2
%(U ;V) + ‖fΨ̂ − fΦ̂‖L2

%(U ;V)

=:‖f − Ph(f)‖L2
%(U ;V) +A1 +A2 +A3.

32

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

Here Ph is as defined in §2.1 and fΛ is as in (28). We now bound A1, A2 and A3.

Step 4(i): We commence withA1. This is elementary. Since Ph is an orthogonal projection we have
‖Ph(a)‖V ≤ ‖a‖V for a ∈ V and therefore

A1 = ‖Ph(f)− Ph(fΛ)‖L2
%(U ;V) ≤ ‖f − fΛ‖L2

%(U ;V) ≤ ‖f − fΛ‖L∞(U ;V), (44)

recalling that we are considering a probability measure d%(y) over U .

Step 4(ii): We next consider A2. Observe that

Ph(fΛ)− fΨ̂ = Ph

(∑
ν∈Λ

cνΨν

)
−
∑
ν∈Λ

ĉνΨν =
∑
ν∈Λ

(Ph(cν)− ĉν) Ψν .

Define the vector Ph(cΛ) = (Ph(cν))ν∈Λ. Then, by orthonormality of the Ψν’s, we have

‖Ph(fΛ)− fΨ̂‖L2
%(U ;V) = ‖Ph(cΛ)− ĉ‖V,2.

To bound this term, apply Lemma 7 to the problem (39). This gives

‖Ph(cΛ)− ĉ‖V,2 ≤ 2C ′1
σs(Ph(cΛ))V,1√

s
+

(
C ′1√
sλ

+ C ′2

)
‖A′Ph(cΛ)− b‖V,2,

where C ′1 = (3ρ′+1)(ρ′+1)
2(1−ρ′) and C2 = (3ρ′+5)τ ′

2(1−ρ′) with ρ′ and τ ′ as in (43). This holds provided
λ ≤ C ′1/(C ′2

√
s). Thus, we now set

λ =
C ′1
C ′2
√
s
. (45)

Since s is given via (37) in terms of m̃ and d, we have shown part (c) of Theorem 5. Notice that
C ′1, C

′
2 � 1 due to the values of ρ′ and τ ′ given by (43). Hence

‖Ph(cΛ)− ĉ‖V,2 .
σs(Ph(cΛ))V,1√

s
+ ‖A′Ph(cΛ)− b‖V,2.

Consider the first term. Let π : {1, . . . , N} → Λ be a bijection that gives a nonincreasing rear-
rangement of the sequence (‖cν‖V)ν∈Λ. Then

σs(Ph(cΛ))V,1 ≤
N∑

i=s+1

‖Ph(cνπ(i))‖V ≤
N∑

i=s+1

‖cνπ(i)‖V = σs(cΛ)V,1 ≤ σs(c)V,1.

Hence,

‖Ph(cΛ)− ĉ‖V,2 .
σs(c)V,1√

s
+ ‖A′Ph(cΛ)− b‖V,2. (46)

We now estimate the second term. Let i = 1, . . . ,m and write
√
m
(
A′Ph(cΛ)− b

)
i

=
∑
ν∈Λ

Ph(cν)Φν,δ(yi)− f(yi)− ni

=
∑
ν∈Λ

Ph(cν) (Φν,δ(yi)−Ψν(yi)) + Ph(fΛ)(yi)− f(yi)− ni.

33

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

Then

‖
√
m(A′Ph(cΛ)− b)i‖V

≤
∑
ν∈Λ

‖Ph(cν)‖Vδ + ‖Ph(fΛ)(yi)− f(yi)‖V + ‖ni‖V

≤ δ
∑
ν∈Λ

‖cν‖V + ‖Ph(fΛ)(yi)− Ph(f)(yi)‖V + ‖Ph(f)(yi)− f(yi)‖V + ‖ni‖V

≤
√
Nδ‖cΛ‖V,2 + ‖f − fΛ‖L∞(U ;V) + ‖f − Ph(f)‖L∞(U ;V) + ‖ni‖V .

Observing that ‖cΛ‖V,2 ≤ ‖c‖V,2 = ‖f‖L2
%(U ;V) ≤ ‖f‖L∞(U ;V) ≤ 1 by Parseval’s identity and the

assumption f ∈ HA(γ, ε, d), we conclude that

‖A′Ph(cΛ)− b‖V,2 ≤
√
Nδ + ‖f − fΛ‖L∞(U ;V) + ‖f − Ph(f)‖L∞(U ;V) + ‖e‖V,2,

where we recall from (18) that e is defined by e = 1√
m

(ni)
m
i=1. Using the definitions of E2 and E3

from (18) and substituting this into (46) now yields

A2 = ‖Ph(cΛ)− ĉ‖V,2 .
σs(c)V,1√

s
+
√
Nδ + ‖f − fΛ‖L∞(U ;V) + E2 + E3. (47)

Step 4(iii): Finally, we consider A3. We have

‖fΨ̂ − fΦ̂‖L2
%(U ;V) ≤

∑
ν∈Λ

‖Ψν − Φν,δ‖L2
%(U)‖ĉν‖V ≤ δ‖ĉ‖V,1.

We now use the fact that ĉ is a minimizer of (39) to get

λ‖ĉ‖V,1 ≤ λ‖0‖V,1 + ‖A′0− b‖V,2 = ‖b‖V,2.

where 0 ∈ VNh is the zero vector. Using the definition of b (given after equation (39)) and (45), we
deduce that

‖ĉ‖V,1 .
√
s
(
‖e‖V,2 + ‖f‖L∞(U ;V)

)
≤
√
s (‖e‖V,2 + 1) =

√
s(E2 + 1).

Note that (42) implies that δ
√
s . 1/

√
N . 1. Hence, we conclude that

A3 = ‖fΨ̂ − fΦ̂‖L2
%(U ;V) .

√
sδ + E2. (48)

Combining the estimates (44), (47) and (48) and noticing that s ≤ N by definition, we deduce that

‖f − fΦ̂‖L2
%(U ;V) . ‖f − fΛ‖L∞(U ;V) +

σs(c)V,1√
s

+
√
Nδ + E2 + E3. (49)

This concludes Step 4.

Step 5: In this penultimate step we use Theorem 10 to estimate the remaining error terms in (49) and
give the exact value of δ. Let S be the set defined in Theorem 10. Since |S| ≤ s and ‖Ψν‖L∞(U) ≥ 1

34

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

(this is due to the fact the Ψν have unit L2
%-norm with respect to the uniform probability measure

over U) we have
σs(c)V,1 ≤

∑
ν /∈S

‖cν‖V ≤
∑
ν /∈S

‖Ψν‖L∞(U)‖cν‖V .

Further, since S is lower and Λ = ΛHC
s−1 we also have S ⊆ Λ. In fact, ΛHC

s−1 is the union of all lower
sets of size at most s. It follows that

‖f − fΛ‖L∞(U ;V) ≤
∑
ν /∈Λ

‖Ψν‖L∞(U)‖cν‖V ≤
∑
ν /∈S

‖Ψν‖L∞(U)‖cν‖V .

Recall that m̃ ≥ 2ds̄2 by assumption. Hence (37) and (40) implies that s ≥ s̄. We now use Theorem
10 and the fact that f ∈ HA(γ, ε, d) to deduce that∑

ν /∈S

‖Ψν‖L∞(U)‖cν‖V ≤ exp(−γs1/d).

Returning to (49), this therefore gives

‖f − fΦ̂‖L2
%(U ;V) . exp(−γs1/d) +

√
Nδ + E2 + E3 ≤ exp(−γs1/d) + E2 + E3,

provided
δ ≤ N−1/2 exp(−γs1/d). (50)

Hence, recalling (42) we now set

δ =
1√
N

min

{
9− 4

√
2

2
√

5(3 + 4
√
s)
, exp(−γs1/d)

}
, (51)

and recall the definitions (37) and (18) of s and E1 respectively to deduce that

‖f − fΦ̂‖L2
%(U ;V) . E1 + E2 + E3,

as required.

Step 6: Having now shown the error bound, the final step of the proof involves bounding the size,
depth and number of trainable parameters for DNNs in the class N defined in Step 1. To do this,
we notice from (51) that

δ & s−1/2N−1/2 exp(−γs1/d),

which, after a few steps, implies

log(δ−1) . log(s) + log(N) + γs1/d.

Moreover, from the definition of the hyperbolic cross index set (26) we notice thatm(Λ) ≤ s (recall
that m(Λ) = maxν∈Λ ‖ν‖1, as defined in Proposition 11). Then, substituting this into the bounds
of the size and depth in Proposition 11, we deduce that

depth(N) . (1 + d log(d)) · (1 + log(s)) · (s+ log(s) + log(N) + γs1/d),

size(N) . d2s2 + ds(log(s) + log(N) + γs1/d) + d2 ·N · (1 + log(s) + log(N) + γs1/d) +NK.

35

DNNS FOR LEARNING HIGH-DIMENSIONAL, HILBERT-VALUED FUNCTIONS

We recall that s ≥ 1. Then after some rearrangements we have

depth(N) . (1 + d log(d)) · (1 + log(s)) · (s+ log(N) + γs1/d),

size(N) . d2s2 + (ds+ d2N)(log(s) + log(N) + γs1/d) +NK,
(52)

Now, it is easy to see from the definition in (37) that (52) becomes

depth(N) . (1 + d log(d)) · (1 + log(m̃)) ·
(

(m̃/2d)1/2 + log(N) + γm̃1/(2d)
)
,

size(N) . d2(m̃/2d) + (d(m̃/2d)1/2 + d2N)
(

log(m̃) + log(N) + γm̃1/(2d)
)

+NK,

Next we recall that the number of trainable parameters is param(N) = N · K. To complete the
proof, we use (33) and (40) to obtain N ≤ ∆, as required.

Acknowledgments

BA acknowledges the support of the PIMS CRG “High-dimensional Data Analysis”, SFU’s Big
Data Initiative “Next Big Question” Fund and NSERC through grant R611675. SB acknowledges
the support of NSERC, the Faculty of Arts and Science of Concordia University, and the CRM
Applied Math Lab. ND acknowledges the support of the PIMS Postdoctoral Fellowship program.

36

	Introduction
	Motivations
	Contributions
	Related work

	Learning Hilbert-valued functions via DNNs
	Setup
	DNNs
	Problem statement

	Holomorphy, best –term polynomial approximation and hidden anisotropy
	Holomorphy
	Polynomial approximation of holomorphic functions
	Hidden anisotropy

	Main result
	Numerical exploration
	Setup
	Effective architectures and loss functions and efficiency of training
	Sample complexity of training

	Conclusion
	Further details on the experiments
	Finite element discretization
	Testing error
	DNN training
	The SCS method

	Proof of Theorem 5
	Formulation as a vector recovery problem
	Hilbert-valued compressed sensing
	Polynomial approximation error bounds for holomorphic functions
	Proof of Theorem 5

