
Proceedings of Machine Learning Research vol 145:1–30, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

Numerical Calabi-Yau metrics from holomorphic networks

Michael R. Douglas∗ MDOUGLAS@SCGP.STONYBROOK.EDU

Subramanian Lakshminarasimhan† SUBRAMANIAN.LAKSHMINARASIMHAN@STONYBROOK.EDU

Yidi Qi YIDI.QI@STONYBROOK.EDU

Department of Physics, YITP and SCGP, Stony Brook University
† Department of Applied Mathematics and Statistics, Stony Brook University
∗ Center of Mathematical Sciences and Applications, Harvard University

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract
We propose machine learning inspired methods for computing numerical Calabi-Yau (Ricci flat
Kähler) metrics, and implement them using Tensorflow/Keras. We compare them with previous
work, and find that they are far more accurate for manifolds with little or no symmetry. We also
discuss issues such as overparameterization and choice of optimization methods.
Keywords: Calabi-Yau metrics, high dimensional PDEs, feedforward networks, complex geometry

1. Introduction

Kähler manifolds with Ricci flat metrics, known as Calabi-Yau manifolds, are the first and still
the most important starting point for compactification of string theory to produce realistic physical
models. Their study led to the discovery of mirror symmetry and a great deal of interesting mathe-
matics. A brief survey appears in Douglas (2015), and textbooks on mirror symmetry include Hori
et al. (2003); Aspinwall et al. (2009).

No closed form expressions are known for these Ricci flat metrics, and it is generally believed
that none exist.1 One can get an approximate description using methods of numerical general rel-
ativity, as pioneered in Headrick and Wiseman (2005). The special properties of Kähler geometry
lead to many simplifications, starting with the representation of the metric by a single function.
Donaldson introduced many ideas such as a representation by projective embeddings and approx-
imation by balanced metrics (Donaldson, 2009). Subsequent works simplified and improved the
numerical methods (Douglas et al., 2007, 2008; Doran et al., 2008; Bunch and Donaldson, 2008;
Seyyedali, 2009; Braun et al., 2008a,b; Headrick and Nassar, 2013; Anderson et al., 2010a,b, 2012)
so that a fairly simple program can get accurate results.

To simplify a bit, the approach used in these works is to expand the Kähler potential in a poly-
nomial basis. As is the case for spectral methods, this is very good for approximating smooth
functions with variations on length scales 1/k, where k is the order of the polynomials used. This
is sometimes good enough, but by varying moduli one can easily produce metrics with structure on
arbitrarily short scales, say by approaching a singular limit, as was studied in Cui and Gray (2020).
And since on aD-dimensional manifold, the number of basis functions grows asO(kD), one cannot
take k very large (the “curse of dimensionality”). Indeed, almost all of these works restrict attention

1. But see Gaiotto et al. (2010); Kachru et al. (2020) for an analytic approach to the K3 metric.

© 2021 M.R. Douglas∗, S. Lakshminarasimhan† & Y. Qi.

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

to manifolds with large discrete symmetry groups to get a manageable number of coefficients. An
exception is Braun et al. (2008a) which studied a randomly chosen quintic with no symmetry.

In recent years, there has been much success with machine learning (ML) inspired approaches
to scientific computation, and especially the solution of PDE’s such as Navier-Stokes and the
Schrödinger equation. This is a rapidly developing area and any reviews we cite here would be-
come dated very quickly, but to give a simple illustration of the approach we follow we cite Hoyer
et al. (2019). This work solves problems in structural optimization – mathematically, the unknown
is a single function in a bounded domain of R2 and the solution is the minimum of a nonlocal energy
functional (the integrated stress). What is novel is to represent the unknown function, not in terms
of finite elements or a Fourier basis, but as the output of a neural network. This provides a space of
approximating functions parameterized by the network weights, which can be efficiently computed
using technologies developed for machine learning. Standard numerical optimization applied to the
energy considered as a function of the weights leads to high quality solutions, which are not limited
by the constraints of previous methods.

These methods have only begun to be explored for higher dimensional geometry. The idea we
propose and study here is to represent the Kähler potential in terms of the output of a holomorphic
network or a bihomogeneous network. Both are feedforward neural networks, whose inputs are
simple functions of the complex coordinates, which use the activation function z → z2, and whose
outputs are efficiently computable functions of the weights. We then find the metric in this class
which is closest to Ricci flat by numerical optimization of an error function with respect to the
weights, much as was done for highly symmetric metrics in Headrick and Nassar (2013).

For the holomorphic network, the inputs are complex coordinates or low degree sections, the
weights and intermediate values (or “activations”) are complex, and the outputs are a subspace of
the space of holomorphic sections. One then takes a hermitian combination of these outputs and
their complex conjugates to get a Kähler potential.

By contrast, in the bihomogeneous network, the inputs are the real and imaginary parts of prod-
ucts of holomorphic and antiholomorphic functions, homogeneous in each separately. Thus the
weights and intermediate values can be taken to be real. The output of the network is then used as
a Kähler potential. This turns out to work better than the holomorphic network for reasons we will
explain.

Since each layer doubles the degree of the section, in principle one can work with large values
of k. One faces the standard challenges of deep networks such as exploding gradients, but we were
able to use depths up to 5 without this being a problem.

Our formulation of the numerical Calabi-Yau metric problem is formally very similar to su-
pervised learning – both problems amount to fitting a function given a set of input-output values
(xi, yi), where xi is sampled from an input distribution and yi is known. Thus most of the task
is already implemented in standard ML packages, and one only needs a few domain dependent
additions. Our code uses TensorFlow, and is available on Github.2

We obtain results for a variety of quintic hypersurfaces, including the familiar one-parameter
Dwork family, and also hypersurfaces with little or no symmetry. Our main focus is to under-
stand the accuracy of these metrics and its dependence on parameters, both those of the manifold
and hyperparameters (parameters of the model and learning algorithm). We can get mean errors
(MAPE defined below) around 10−3 for metrics with no symmetry, about 100 times better than

2. https://github.com/yidiq7/MLGeometry

2

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Braun et al. (2008a). We also discuss the nature of the optimization landscape and the overparame-
terized regime, which have been important themes in recent studies of ML.

1.1. Related work

Recent works which study numerical Calabi-Yau geometry include Ashmore et al. (2020); Ashmore
(2020); Anderson et al. (2020). In Ashmore et al. (2020), the Kähler potential is represented by a
gradient boosted decision tree. The problem is solved at various lower degrees k, and the ML
model does extrapolation in the degree (Richardson extrapolation). In Ashmore (2020) eigenvalues
of Hodge Laplacians are computed. The work Anderson et al. (2020) (appearing simultaneously
with ours) studies metrics with SU(3) structure using neural networks.

Polynomial activation functions have been studied in many ML works, for example Chrysos
et al. (2020); Mannelli et al. (2020), but our motivations (contact with higher dimensional complex
geometry) are new.

A brief mathematical summary of the approach will appear in Douglas (2020).

2. Numerical complex geometry using machine learning methods

In this section we alternate between the complex geometry needed for our problem and review
of the concepts we use from machine learning. For the benefit of readers who are not experts in
both fields, we review some basic concepts on both sides in Appendix B. Some useful background
material includes Griffiths and Harris (2014); Huybrechts (2005) on complex geometry and Bishop
(2013) on machine learning.

2.1. Brief review of the Calabi-Yau metric problem

Our problem is the following: we are given a complex manifold M with local coordinates zi ≡
(z1, . . . , zn) and their complex conjugates z̄ ī ≡ (z1, . . . , zn)∗. which admits Kähler metrics, deter-
mined (as we review in Appendix B.1) by a Kähler potential K as

gij̄ =
∂2K

∂zi∂z̄j̄
≡ ∂i∂̄j̄K. (1)

We want to find a Kähler metric which to a good approximation satisfies Einstein’s equation

Ricciij̄ = Λ gij̄ , (2)

where Λ is a real constant. General arguments determine the sign of Λ in terms of the topology of
M (its first Chern class). Deep mathematical theorems of Yau, Aubin, Donaldson-Song, and others,
show that a solution always exists for Λ ≤ 0, and give the necessary and sufficient conditions for
Λ > 0. For Λ 6= 0 the solution is generally unique, while for Λ = 0 it is unique up to an overall
rescaling gij̄ → R2gij̄ for R ∈ R+. The Λ = 0 metrics are called “Ricci flat.” While we focus on
this case, the methods we discuss can be used for the other cases.

In this work we take M to be the quintic hypersurface in CP4, the set of solutions to a polyno-
mial equation such as

0 = f(Z1, Z2, Z3, Z4, Z5) =
5∑
i=1

(Zi)5 + ψZ1Z2Z3Z4Z5 (3)

3

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

where ψ is a fixed complex number (a “complex modulus”). Here Zi are projective coordinates,
and a point on CP4 is an equivalence class of points in C5 − {0} under Zi ∼ λZi ∀λ ∈ C. M is a
three complex dimensional space which is a manifold, except at possible singular points Z at which

0 = f(Z) = ∂if(Z) ∀1 ≤ i ≤ 5. (4)

For Equation (3), these only exist for ψ = −5ω where ω5 = 1 is a fifth root of unity. For other ψ,
one can show that c1(M) = 0, so Λ = 0 in Equation (2). This Fermat quintic (for ψ = 0) or Dwork
family of quintics is the most studied example, e.g. see Candelas et al. (1991).

More generally, one can take f to be any quintic polynomial. Such a polynomial has 126 ad-
justable coefficients, and two manifolds M1 and M2 defined in terms of two polynomials f1, f2

are equivalent (complex diffeomorphic) only if there exists a linear transformation W i ≡ LijZ
j

such that f1(Z) = f2(W). This introduces 25 redundancies in the parameterization, so the space
parameterizing quintic hypersurfaces in CP4 (the complex moduli space) is 101 complex dimen-
sional. One can show that solutions of Equation (4) only exist on a codimension one variety in this
space (the “discriminant locus” ∆), so the moduli space of nonsingular quintic CY manifolds is 101
dimensional.

Of the many generalizations of this construction, the most used in string theory are to replace
CPN by products of projective spaces, weighted projective spaces and toric varieties. Here we sim-
ply point out that the constructions below can be straightforwardly adapted, by replacing homogene-
ity with weighted multihomogeneity, or equivalently gauge invariance in the GLSM constructions.
Many details of these generalizations can be found in the works of the Penn group (Braun et al.,
2008b; Anderson et al., 2010a).

2.2. The embedding method and geometric quantities

Following Donaldson (2009), most work on numerical Calabi-Yau metrics represents the metric
using an embedding by holomorphic sections of a very ample line bundle L. This embedding is
a map into a linear space, analogous to spectral embeddings such as the “Laplacian eigenmap”
construction, but with the great advantage that the map has a simple exact form. A review of the
embedding method is in Appendix B.2.

The embedding representation gives us a natural family of metrics, the pullbacks of the Fubini-
Study metrics from complex projective space. Using our embedding by a basis of N sections sI ,
and pulling back a Fubini-Study metric on CPN−1, the embedding then leads to the Kähler potential

K = log
∑
I,J̄

hI,J̄s
I s̄j̄ (5)

where sI is a basis of N = h0(L) holomorphic sections. This gives us an N2 real dimensional
family of metrics parameterized by the hermitian matrix hI,J̄ .

The geometry of a Calabi-Yau manifold (let n be its complex dimension; eventually we will
take n = 3) is determined by two fundamental differential forms. The first is present on any Kähler
manifold – it is the Kähler form

ω = ∂i∂j̄K dZi ∧ dZ̄ j̄ . (6)

This carries the same information as the metric and can be used to write the volume element dµg =√
g. On a Kähler manifold, one can do this without taking square roots:

dµg ≡ ωdimCM
g = detωg = det

i,j̄
∂i∂j̄K. (7)

4

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

The other, which is only present for a Calabi-Yau manifold, is the holomorphic n-form

Ω = Ωi1...indZ
1 ∧ . . . ∧ dZn. (8)

It is nonvanishing and nonsingular, so we can define an associated volume form

dµΩ ≡ NΩΩ ∧ Ω̄. (9)

The normalization constant NΩ will be set to make the total integrals of both volume forms equal.
One can show that the integral

∫
M ωng is a topological invariant, which stays fixed as we continuously

vary the metric. Thus we can begin by computing the value of NΩ which does this for the initial
metric, and leave it fixed as we search for the Ricci flat metric.

The form Equation (9) depends on the complex structure but is independent of the Kähler form
and thus the embedding we use to represent M . Often one can write an explicit formula for it – for
a hypersurface it is

Ω =
dZ1 ∧ . . . ∧ dZn

∂f/∂Zn+1
(10)

where f is as in Equation (3). This formula becomes singular where ∂f/∂Zn+1 = 0. To fix this,
one can check that one gets the same Ω by choosing any of other the coordinates to play the role of
Zn+1. One can then define several coordinate patches, each with one of these representatives, and
whose union covers M .

Now, we come to a very helpful simplification which follows from Calabi-Yau geometry. For a
general metric, Equation (2) is a system of PDEs determining the individual metric components and
with general covariance. It is not elliptic unless one properly fixes the coordinate system, which is
quite nontrivial to do. By using complex coordinates, Equation (1) for the metric, and Equation (38)
for the Ricci tensor, it becomes a PDE for a single function without these issues.

0 =
∂2

∂Zi∂̄Z̄ j̄
log det

i,j̄

∂2K

∂Zi∂̄Z̄j
. (11)

However this is still nonlinear and involves many derivatives. But for a Ricci flat Kähler metric, one
can integrate this formula twice to obtain

dµΩ = dµg (12)

or equivalently

1 = η ≡ dµg
dµΩ

(13)

where the constants of integration are determined by global consistency.3 Another advantage of this
condition is that it can be obtained from a convex energy functional (see §3).

To make this completely explicit, use Equation (10), use the constraint f = 0 to solve for
i, j = n+ 1 in the determinant in terms of the other derivatives, and make a final rearrangement, to
get

1 = η ≡ 1

NΩ
|∂f/∂Zn+1|2 det

1≤i,j≤n
Li
′
i

∂2K

∂Zi′ ∂̄Z̄j′
(L†)j

′

j , (14)

where the matrix L is given explicitly in Equation (40).

3. A short argument for this is that if it were not the case, then 1/η in Equation (14) would define a non-constant
harmonic function on M , but on a compact M this does not exist.

5

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

2.3. Multilayer holomorphic embeddings

The idea we will pursue in this work is to use the feed-forward network:

Fw = W (d) ◦ θ ◦W (d−1) ◦ . . . ◦ θ ◦W (1) ◦ θ ◦W (0), (15)

where the W (i)’s are general linear transformations, and θ is the activation function, to define a
subset of the metrics Equation (5). There are several ways to do this. In this subsection we define
a network with complex weights and activations, which defines a subspace of H0(Lk). We will
then restrict Equation (5) to this subspace. In the next subsection we will take a different approach,
forming real combinations as the inputs to the network.

Thus, here we take the input space X to be the ambient spaceH0(OM (1)), the space parameter-
ized by the homogeneous coordinates Zi. Concretely, the first layer has 5 complex inputs. We take
all of the intermediate vectors to be complex, and we choose θ(x) to be a nonlinear homogeneous
holomorphic function. The simplest choice and the one we will use is to take

θ(x) = x2. (16)

Thus each successive layer defines a subspace of sections of degree twice the previous layer.
To get a real valued Kähler potential, we replace the final layer W (d) with a general linear

combination of products of the sections with their complex conjugates,

K(w;Z) = log

Dd∑
id=1,j̄d=1

h
(d)

id,j̄d
Zidd Z̄

j̄d
d (17)

Z(d) ≡ θ ◦W (d−1) ◦ θ ◦ . . . ◦ θ ◦W (1) ◦ θ ◦W (0)Z (18)

Z̄(d) ≡ (Z(d))∗. (19)

This construction gives us a class of metrics for each choice of depth d and layer widths
D1, . . . , Dd, obtained from embeddings with degree k = 2d. The total number of real weights
is

Nw = 2 (DD1 +D1D2 + . . .+Dd−1Dd) +D2
d. (20)

GenerallyDi < h0(L2i) so this will not span the complete basis of sections, in other words we have
restricted the embedding and are only using a subset of metrics. While the final layer zd is a linear
subspace of H0(L2d), this subspace is nonlinearly parameterized by the weights. The hope is that
it is flexible enough to describe the metrics of interest.

A variation on this is to take the inputs Z to be a complete basis of sections sI of degree k0.
For the hypersurface f = 0 in CPD−1, the basis will be the symmetrized degree k0 monomials,
quotiented by the ideal generated by f (if k0 ≥ deg f). Other combinations of layers and activation
functions are of course possible, subject to the constraint that every activation (intermediate value)
is homogeneous (a section of a definite line bundle). Thus one cannot have skip connections, but
one could take other products of outputs from previous layers.

We have implemented these networks, but they turned out to have some disadvantages com-
pared to the approach we will discuss next. One is technical: ML software does not always treat
holomorphic functions as one would expect (in particular the derivative ∂/∂z), and one must be

6

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

careful in programming a complex network. More importantly, one needs very wide networks to
represent simple metrics. Consider the Kähler potential

K = log
∑
i

|Zi|2 (21)

constructed from k = 1 sections. This is also a point in every space of k > 1 metrics (up to the
overall scale), as we can write

K = k log
∑
i

|Zi|2 = log

(∑
i

|Zi|2
)k

(22)

= log
∑
I

cI |ZI1 · . . . · ZIk |2. (23)

Reproducing this sum over the complete basis of sections would require a very wide final layer.

2.4. Bihomogeneous embeddings

A variation which does not have the problems we just described is to use bihomogeneous sections,
meaning products of holomorphic and antiholomorphic sections, as the activations (intermediate
values) of the network. Thus, we would take

K(w;Z) = logW (d) ◦ θ ◦W (d−1) ◦ . . . ◦ θ ◦W (2) ◦ θ ◦W (1)(ZZ̄), (24)

where the inputs (ZZ̄) are the real and imaginary parts of the bihomogeneous (or “sesquilinear”)
combinations ZI Z̄ J̄ . In terms of ZI = XI + iY I these are

XIXJ +XJXI − Y IY J − Y JY I ∀1 ≤ I ≤ J ≤ n, (25)

XIY J −XJY I ∀1 ≤ I < J ≤ n, (26)

which in n complex dimensions make up n2 real components. The output dimension is Dd = 1.
For d = 1 and taking W (1) real, this reproduces Equation (5) with k = 1.

In this network, the inputs, intermediate variables and all of the weight matrices will be real.
One still needs the activation function θ to be homogeneous, and z → z2 is still the natural choice.
The total number of real weights is now

Nw = DD1 +D1D2 + . . .+Dd−2Dd−1 +Dd−1. (27)

Let us check that this transforms properly under a change of projective coordinates zi → λzi.
Then

(ZZ̄) → |λ|2 (ZZ̄) (28)

θ ◦W (ZZ̄) → |λ|4 θ ◦W (ZZ̄) (29)
... (30)

K(w;Z) → K(w;Z) + 2d−1 log |λ|2 (31)

Again, there are many variations on this construction – any rules of combination which are homo-
geneous in the bidegrees (1, 0) for z and (0, 1) for z̄ are allowed.

7

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

With this construction, the higher degree space of Kähler potentials contains the lower degree
spaces in a simple way. For example, Equation (22) can be reproduced with width 1 intermediate
layers. This construction can also represent real-valued functions as a differenceK1−K2. HereK2

could be a fixed reference Kähler potential of the same degree, or the output of a second network.
A potential problem with Equation (24) is that it is not easy to enforce positive definiteness of

Equation (1). However we got good results without explicitly doing so. Two reasons are that we do
not use the inverse metric, and Equation (12) forces the determinant of the metric to be positive.

3. Implementation

Other than the use of a network instead of a basis of sections, our method is as used in previous
works: optimization as in Headrick and Nassar (2013) using the sampling methods of Douglas et al.
(2008). It turns out that this is so similar to supervised learning that we can easily adapt standard
ML software to do it.4 Thus we review supervised learning briefly (and at more length in appendix
B.4) to explain this.

3.1. General implementation

In supervised learning, we have a data set of Ndata items, each of which is an input-output pair
(xn, yn). These are supposed to be drawn from a probability distribution P on X × Y . The goal is
to choose the function from X to Y from a given set (or “model”) which best describes the general
relation P between input and output, in the sense that it minimizes some definition of the expected
error (an objective or “loss” function). The procedure of making this choice given the data set is
called training the network.

To phrase our problem in these terms, note that in Equation (12), the left hand side dµΩ is a
known function of the point Z, while the right hand side dµg is an adjustable function depending on
the parameters of the metric g, in other words the weights. Thus we can take our input dataset xi to
be a set of points Zi, the output we are trying to fit is the value of dµΩ at these points, call these yi,
and the “model” we are using to fit it is dµg. Thus the problem is exactly of the form we desired.
We are still solving a PDE, but the derivatives are all done in the computation of dµg.

Let us flesh out this observation. An interpolation problem requires a sampling procedure for
the xi, a model for the yi, an objective function which measures the quality of the fit, and an
optimization procedure.

As we just explained, the Ricci flatness condition is η = 1. The least squares error is then

E =

∫
M
dµref (η − 1)2 (32)

where dµref is a “reference measure” on M . Here η (Equation (12)) is implicitly a function of
the weights through dµg; we put this in the numerator to simplify this dependence. Varying with
respect to the weights, and assuming that there are enough weights to vary η at every point in the
support of dµref , its minimum will be η = 1 on this support.

Note that the integral of any convex function F (η) will have the same optimum. Out of these
choices, we would prefer to use an objective function which is convex in the parameters. An im-
portant feature of the continuum PDE is that if F (η) is convex, then considered as a functional of

4. Supervised learning was already used in computing numerical Ricci flat metrics by Ashmore et al. (2020), to extrap-
olate the results from Donaldson’s T-map method. We feel the approach taken here is more straightforward.

8

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

the Kähler potential, EF has a unique critical point.5 However this need not be so when considered
as a function of the parameters. Indeed, it is never the case for a nontrivial objective function and
the multilayer FFN Equation (15), as is clear for the simplest example of a two layer linear network
y = w1w0x.

Another complicating factor is that we will use a reference measure dµref supported on a finite
set of points. Since the variation of EF only imposes constraints on the support of dµref , the varia-
tional equations and their solutions will generally depend on this support (but not on the values of
dµref). Furthermore one expects multiple or degenerate solutions in the overparameterized regime
we discuss later.

In practical ML, while nonconvexity and nonuniqueness can lead to problems, they turn out not
to be as serious as one might expect. This point has received extensive study and can be understood
analytically for linear networks (with activation function f(x) = x), see for example Advani et al.
(2020). But in practice, one varies the initial conditions and learning rate until one finds choices
which work, as discussed in textbooks such as Goodfellow et al. (2016). This is part of the “art” of
machine learning.

As for the objective function, least squares as in Equation (32) is usually a good choice, though
we consider alternatives in §4.1. As a reference measure, we take the Monte Carlo measure (or
“empirical measure”) defined as an average over a set of N randomly chosen points on M ,

dµref (x) =
1

N

N∑
i=1

δ(x− xi). (33)

If xi is sampled from some dP , then limN→∞ dµref → dP under very weak conditions on dP and
the integrand.

To sample points onM we use the procedure of Douglas et al. (2008). We sample pairs of points
a, b from a normal distribution on C5. Regarded as points on CP4, they are distributed according
to Equation (39). We then find the points on the intersection of the line λa + ρb with M , in other
words the choices of λ/ρ for which f(λa+ ρb) = 0. This equation will have deg f solutions (with
multiplicity) and for our purposes (which do not look at correlations between points) we can use all
of them as inputs xn. By a theorem of Shiffman and Zelditch (1999), they are distributed according
to the pullback of Equation (39) to M . We then reweighted this distribution to get dµref = dµΩ, by
multiplying by the ratio of this form over the FS volume form. In this way we avoided introducing
an additional geometric quantity not present in the actual CY geometry. This was important for
the balanced metric computation of Douglas et al. (2008), but for defining a loss function it is not
strictly necessary.

3.2. Implementation details

Our code is written in Python 3 and uses TensorFlow, numpy and sympy. Many of the routines are
written twice, using sympy for generality and then rewritten for our specific examples using numpy
for efficiency.

To better organize the code, we defined a general class which implemented operations such as
sampling points, maintaining sets of points, integrating over points, computing geometric tensors

5. This is why this highly nonlinear complex Monge-Ampere equation is relatively tractable. A short derivation is in
Headrick and Nassar (2013), and Berndtsson (2013) has an extensive discussion of this point with references.

9

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

and the like, hiding details specific to a particular construction of manifolds. We put these details
in the Hypersurface class. One could write other classes for other manifold definitions, for
example hypersurfaces in toric varieties.

Although one might think that the existence of projective coordinates eliminates the need to
define coordinate patches, it is better to use them. This is because when we take derivatives in
Equation (1), if all of the coordinates are small (as is possible with projective coordinates) we can
lose numerical precision and potentially overflow. For example, after taking derivatives Equation (1)
of Equation (5), the norm of the coordinates appears in the denominator. This norm depends on
the parameters h in Equation (5), and when we go to networks the denominator depends on the
weights in an even more complicated way. For numerical stability, it is better to assign the points to
patches according to which of their coordinates has the largest magnitude, and then normalize this
coordinate to 1. Then, constructing Equation (10) on the hypersurface leads to a second potential
division by a small number. This is handled by a further subdivision into subpatches, where a
point is assigned to a subpatch according to the largest magnitude of |∂f/∂zi|. The class structure
Hypersurface isolates these details from the rest of the code, which need only know how to
deal with several batches of points (coming from the different subpatches). We also implemented a
function to generate TensorFlow datasets which store the points on different patches and their patch
information. They can be easily loaded and trained as in other neural network problems.

To integrate the code with TensorFlow, we constructed layers which implement Equation (17).
Of course we needed a special layer to compute the volume form Equation (7) from the Kähler
potential. This requires the computation of the complex hessian ∂i∂j̄K. With some manipulations,
it can be done directly using TensorFlow’s backpropagation technique, which allows us to calculate
the derivatives efficiently even with higher ks.

In a polynomial network with activation function z → z2, the weights in the front layers will
have higher orders as the depth of the network increases, which will make the values of gradients
unstable over each step. To solve this problem, we used the Adam algorithm (Kingma and Ba,
2015) to train our network. It computes an individual adaptive learning rate for each parameter in
the network using the first and second moments, which smooths the training process.

Adam and other gradient descent methods are first order, and converge slowly compared with
second order methods which use the Hessian. Newton’s method is the simplest example. If one
starts close to a minimum, a second order method will square the error ε with each iteration, and
converge very quickly. A rough estimate is that ε → λ1|f ′|ε2 where λ1 is the largest eigenvalue of
the inverse Hessian ∂2f .

The inverse Hessian has D2 components in D dimensions, and it is generally impractical to
compute it in a high dimensional parameter space. To deal with this, one can estimate it from
the gradient computed at several points. The L-BFGS algorithm (Liu and Nocedal, 1989) does
this using the gradients computed in the previous iterations and is often the second order method
of choice. It is not much used in practical machine learning, because the signal to noise ratio is
generally not high enough to justify high precision optimization, and it is not even available in
standard Tensorflow. However it is in an extension package tensorflow probability and it
is available in our code.

Another method to solve the exploding/vanishing gradient problem in deep networks is batch
normalization (Ioffe and Szegedy, 2015). This is done by standardizing the weights distribution in
the training stage, which requires individual recenterings and rescalings of the components in the

10

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

vector of sections. This is not allowed in our model, but one could still do a overall rescaling of the
vector. We will implement this feature in the future.

4. Results

In the present work we implement the algorithm just proposed, study the dependence of accuracy
and speed on the hyperparameters (depth, widths, learning schedule), and propose reasonable val-
ues. We intend to study interesting geometry and physics problems elsewhere.

Compared to previous work, the main advantage of this approach is that it can describe arbi-
trarily complicated metrics with structure on multiple scales. To study this, we considered several
quintic CY manifolds with different parameterized families of defining functions f = 0. We want to
vary the minimal length scale on which the metric will have structure, and we want to scan through
geometries with more or less symmetry.

The families we chose were

1. The Dwork quintics f = 0 as in Equation (3). Equivalently, f = f1 below with φ = 0.

2. A two parameter family with less symmetry,

f1 = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + ψz0z1z2z3z4 + φ(z3z

4
4 + z2

3z
3
4 + z3

3z
2
4 + z4

3z4) (34)

3. Another two parameter family,

f2 = f1|φ=0+ α

(
z2z

4
0 + z0z4z

3
1 + z0z2z3z

2
4 + z2

3z
3
1 + z4z

2
1z

2
2 + z0z1z2z

2
3 + (35)

z2z4z
3
3 + z0z

4
1 + z0z

2
4z

2
2 + z3

4z
2
1 + z0z2z

3
3 + z3z4z

3
0 + z3

1z
2
4 +

z0z2z4z
2
1 + z2

1z
3
3 + z1z

4
4 + z1z2z

3
0 + z2

2z
3
4 + z4z

4
2 + z1z

4
3

)
.

Whereas the Fermat quintic has Z4
5×S5 discrete symmetry, taking ψ 6= 0 breaks this to Z3

5×S5.
The generic CY in the f1 family has Z2

5×S3 discrete symmetry, and the generic CY in the f2 family
has no discrete symmetry.6 Thus specifying their metrics will require successively more data; we
will not try to quantify this dependence. We should add that the functions f1 and f2 were chosen
before beginning our experiments.

A reasonable proxy for the smallest length scale is the distance in the space of defining functions
from f to the nearest function fs which defines a singular Calabi-Yau manifold, one for which
fs = ∇fs = 0 has a simultaneous solution in CP4. As we briefly explain in the appendix, this
is justified by looking at the generic form of a nearly singular metric and how it depends on the
coefficients of f . A suitable definition of the distance is7

d2
sing(f) =

minZ∈M
∑5

i=1

∣∣∣ ∂f∂Zi

∣∣∣2
(1/5!)

∑
I(
∏5
i=1(Ii)!)|fI |2

(36)

6. We took the parameters ψ, φ, α real so there is still a Z2 complex conjugation symmetry.
7. To clarify the notation in the denominator, a term Z5

i in f gets the coefficient 5!/5! = 1, Z3
1Z

2
2 gets 3!2̇!/5! = 1/10,

etc..

11

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

These values are plotted as heat maps for f1 in Figure 1(a)subfigure and f2 in Figure 1(b)subfigure.
The accuracy of a solution will be measured as the norm of η−1 in the L1 (MAPE), L2 (RMSE)

and L∞ (MAX) error. In machine learning, one always checks the error twice, for the sample used
in optimization (training error) and on another set of points chosen independently (testing error).
We followed this practice, in part because it is the default in Tensorflow/Keras, and also to get a
conservative error estimate. As we discuss below the difference will be meaningful.

A particular run of the algorithm will depend on various “hyperparameters”:

• The depth of the network and width of the layers.

• The number of points Np for Monte Carlo integrations.

• The batch size Nb for stochastic gradient descent.

• The optimization algorithm and training schedule (number of gradient descent steps, learning
rate, etc.).

Practically, the most stringent constraints on these parameters are memory limitations. The
largest memory items in a network are usually the intermediate results, which for width W are
matrices of size Nb ×W , with each item taking 4 − 16 bytes depending on precision and whether
complex numbers are needed. Our 32 GB GPUs allowed batches of 100000 points but this was cut
to 20000 points for the largest networks (see Table 1).

For a single layer network directly implementing the Fubini-Study metrics Equation (39), W is
the total number of parameters. This grows rapidly with k and our memory limited us to k ≤ 4.8

By contrast one can run 5 layer and even deeper FNN’s.
Out of the networks which can be run, one wants a choice which works robustly (in nearly all

cases) with minimal error. Since all metrics of a given k are Fubini-Study metrics , we should
compare with the minimal error in this class. Assuming M is nonsingular, this best possible error
will decrease exponentially in k = 2depth. As explained in Donaldson (2009) this follows because
we are making a polynomial approximation to a C∞ function. The corresponding statement in
Fourier space may be more familiar (the Paley-Wiener theorem).

It is not a priori clear to us that this will be the case for our networks. One might hypothesize
that the error is controlled instead by the total number of parameters in the network (denote this
number as P), the width (as found in Golubeva et al. (2020)), or some other property. So far as we
know, work on neural methods for PDE (E and Yu, 2018; Grohs et al., 2019; Müller and Zeinhofer,
2019) has not led to a clear conjecture about this, but it is an interesting question to study.

We next discuss the numbers of total points Np and batch size Nb. In machine learning, one
usually takes Nb < Np both for computational practicality and to get a noise term in the gradient,
parametrically of magnitude 1/

√
Nb. Empirically this leads to models which generalize better,

for reasons which are not completely sorted out but which include the following. First, ML loss
functions are usually non-convex, and noise helps the optimization to escape local minima. This
turns out to be the case for our loss functions as well. Second, noise favors finding wide minima
(with small second derivatives or even flat directions), and there are statistical arguments that these
will generalize better. While our problem is not statistical, since we are using sampling in our

8. With additional programming effort one could probably do k ≤ 6. By using minibatches one could go higher, but
this would require replacing our L-BFGS optimization, perhaps as in Berahas et al. (2016).

12

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

computations, this point might be relevant. However we did not find any evidence that decreasing
Nb ever improves our results.

A much discussed point in the theory of machine learning is the role of overparameterization.
In general, once the number of parameters exceeds the total dimension of the data being fit, one
expects to be able to completely fit (interpolate) the data. The optimization problem is easier in
this regime, which is a significant advantage. But according to the usual dogma of statistics and
of numerical analysis, as one uses more parameters, the extra fitting ability will fit noise, and the
accuracy on testing data will decrease. One might have thought that an overparameterized model
would not be able to generalize.

Surprisingly, overparameterized models can generalize well. While the reasons for this are still
being debated, it seems to be accepted that the dogma we cited is not correct in this regime, with
works such as Zhang et al. (2017); Belkin et al. (2019) making many observations which contradict
it. It still might be that this paradox can be resolved within current theory. For example, a traditional
way to deal with overfitting is to introduce a regularization term in the loss function, such as the sum
of the squares of the weights, which favors simpler models (Bishop, 2013). A popular hypothesis is
that the choice of initial conditions and optimization algorithm in deep learning produces an implicit
regularization term.

Previous works on CY metrics studied highly symmetric metrics with few parameters, so this
issue did not arise. But we will encounter this issue, now in a mathematically controlled setting.
Thus in §4.2 we also looked at the case Np < P to see if the situation is similar to that for ML.

4.1. Experiments and Observations

As we explained above, a holomorphic network with width less than the number of sections at a
given layer is not able to represent the Fubini-Study metrics at that k, which might lead to problems.
In practice we found that these results were very sensitive to the initial conditions for the gradient
descent. The bihomogeneous networks were not very sensitive and produced better results, so we
restricted the rest of our study to these.

The convergence of some example networks is shown in Figure 2. Adam seems to converge
slowly near the minima, so we also introduced a second stage of training using L-BFGS and Nb =
Np. This solved the speed problem, converging in a matter of minutes.

To understand the magnitude of the errors, it is useful to estimate the optimal error as a function
of k. We did this following an observation of Headrick and Nassar (2013). They found for the
Dwork quintics that the error Equation (32) went as E ∝ C−k, with C ∼ 8 for the Fermat quintic
and varying with ψ. The fit was already good at low k, so by fitting this formula with low values of
k, we can estimate the best possible error as a function of k and the parameters of the CY. Thus we
optimize over the entire space of metrics Equation (39) for k = 2, 3, 4 and do the linear fit

log error ∼ C0 + C1k. (37)

This leads to estimated optimal errors, denoted in the plots as est8 for k = 8. We then did sweeps
through the parameters of the three families of quintics and compared the results with these optimal
errors.

Overall, the network configurations have the largest effect on accuracy. We experimented
with networks 50 50 1, 70 70 70 1, 300 300 300 1 and 500 500 500 500 1, etc., corresponding
to k = 4, 8, 16 with various total number of parameters (see Figure 3, Figure 4 and Table 1). In

13

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

general, k plays a more important role here, which agrees with the previous results of Headrick and
Nassar (2013): The accuracy of the network models are able to reach approximately the same mag-
nitude as those of the FS models with the corresponding k in all cases, estimated by Equation (37).
The dependence on the number of parameters is more complicated. It does not have a significant
independent effect for the more symmetric quintics, but it does for those defined by Equation (35),
as we discuss in §4.2. For example, the k = 8 FS models with 245025 real parameters are pre-
dicted to be around a factor of 100 better MSE than k = 4. However, the 70 70 70 1 network
was able to achieve the same accuracy with only 11620 real parameters for the more symmetric
manifolds f1, and increasing the number of parameters did not seem to improve it. But for f2,
a wider 300 300 300 1 network with 187800 real parameters significantly improved the training
accuracy in most cases, although much of this was overfitting (especially for f1) as one can see
in Figure 5(a)subfigure.9 Still, this model was able to attain the FS k = 8 accuracy in all cases.
While the k = 8 FS metrics are simpler than such a network, its memory requirements (at least for
a Tensorflow implementation) are challenging, so reproducing its accuracy is of real practical value.

There is also a strong though not exact relation between the distance to the singularity and the
error, supporting the idea that the ratio of length scales controlled by this is the dominant parameter.
This relation is shown in Figure 3 and Figure 4 and summarized in Table 1, where we quote an
average error for ”less singular” and ”more singular” CYs with distance to the discriminant locus
less than (greater than) 0.1. The distance also affects the total number of parameters needed to reach
the best accuracy. The 70 70 70 1 network shows similar performance as the 300 300 300 1 one
for less singular f2s (distance greater than 0.15), in comparison to other cases mentioned above.

In scanning through a family of manifolds, training could be made significantly faster by ini-
tializing the network with the weights optimized for a nearby parameter value. Details of how to do
this and the appropriate learning rates and times can be found in the accompanying software.

For completeness, we also checked the idea that the metrics on the CY manifolds defined by
Equation (34) and Equation (35) must be described by non-symmetric models as follows. We com-
puted Kähler metrics using the code developed by Headrick and Nassar (2013), which assumed the
discrete symmetry S5 × Z4

5 , and computed the deviation from Ricci flatness for all three classes of
CY defined in §2.2. For k = 4, 8 and the symmetric CYs Equation (3), this was roughly the same
as for our models. But as one would expect, the errors for Equation (34) and Equation (35) with
φ, α 6= 0 were large, of order 0.1− 0.01, even for high k.

Some other methods we tested include `2 regularization, using 64 bit networks and changing
loss functions. Most of them did not show a significant impact on our results, but in some cases, it
could be helpful to add 0.1*MAX error to the loss function in the early stage of training to prevent
getting stuck in a bad local minimum, especially for a deep network and a complicated manifold.

Lastly, we made several attempts to find a model which significantly improves on the perfor-
mance, including the five layer 300 100 100 100 1 and 500 500 500 500 1 models, and also using
the values of the k = 2 or k = 4 sections as inputs to less deep networks. We found that the
optimization was much less robust, often leading to bad local minima. In the second L-BFGS stage,
memory limitations restricted us to Np ∼ 2000. While some of our runs had up to 10 times bet-
ter accuracy, these successes were not reliable. Thus for math physics applications we suggest at
present using the four layer N N N 1 networks with N ∼ 100.

9. This is another motivation to implement minibatched L-BFGS as mentioned in §4.

14

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

We believe that further development could improve on this, and our GitHub site will have a
benchmark script with a set of test examples and a leaderboard page where we will post new state
of the art results.

4.2. More theoretical issues

We turn to discuss theoretical issues for which these results might be relevant. One question we
raised earlier is whether the accuracy is controlled more by k or by the number of parameters.
While k controls the smallest length scale on which one can vary the metric, it might also be that
a complicated metric contains many features at a variety of scales, which require many parameters
to represent. Comparing our results for the 70 70 70 1 network and the 300 300 300 1 network
suggests that both factors are in play. Whereas both networks attained the maximal accuracy for the
simpler and more symmetric hypersurfaces f1 = 0, for the more complicated hypersurfaces f2 = 0
and the more singular cases of these, only the larger network attained this accuracy. This suggests
that there is a “complexity” factor which deserves to be quantified and understood.

In theory of ML, the overparameterized regime is usually defined not in terms of an inequality
between Np and P , but rather as the regime in which the model has enough parameters to fit an
arbitrary set of Np observations (Zhang et al., 2017). To locate this threshold in our case, we did
runs computing the best k = 4 FS metric (with P = 4900 parameters) and with a range of Np

values. We found that this model could achieve roughly zero training loss for Np ≤ 2500, while
the (MSE) testing error had a significant dependence on Np, consistent with 1/

√
Np. Already for

Np = 5000 the training error was comparable to that for larger Np. Following Zhang et al. (2017),
we also trained models with “random labels,” here produced by shuffling the η values between the
different points, and found the same behavior of training error, along with large testing error. This
case can be compared with a random feature model which is solvable in the large Np, P limit, as
we will discuss elsewhere.

5. Conclusions and further directions

We developed and tested software to compute Ricci flat metrics on Calabi-Yau hypersurfaces in
projective space. Using it, one can get results with ∼ 0.1% absolute error on CY3 manifolds with
no symmetry. It is based on the standard Tensorflow/Keras platform and can be easily adapted to
handle more general Kähler manifolds.

It would be interesting to look at the Laplacian and hermitian Yang-Mills equations and the
other applications considered in previous work. Similar techniques could be used to represent other
geometries, as we intend to discuss elsewhere.

The Ricci flat Kähler metric problem is one of the better understood problems in nonlinear
PDE, with no boundary conditions to complicate the discussion, so it might serve as a good testbed
for numerical methods. It would be interesting to try other deep learning PDE methods such as
Sirignano and Spiliopoulos (2018). And as we discussed in §4.1, one can get a well motivated
estimate for the maximal accuracy which can be obtained for a given depth network. This helps
in studying how the accuracy depends on hyperparameters, as we discussed in §4.2. It would be
interesting to have more specific theoretical predictions for this dependence.

15

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Acknowledgments

This project was begun in the summer of 2019 at Stony Brook University in collaboration with
Tudor Ciobanu. Tudor was a very promising first year graduate student, and his untimely passing
fills us with deep sorrow. We hope this work can add to his legacy.

We thank the authors of Anderson et al. (2020) for early discussions and informing us about
their work.

We thank Steve Skiena and the Stony Brook AI Institute for the use of their GPU servers.
MRD would like to thank Shing-Tung Yau for discussions, for reading the manuscript and for

general support. He thanks Steve Zelditch for discussions on Kähler geometry and comments on
Douglas (2020). He also thanks many people for conversations about ML, and especially Sanjeev
Arora, David McAllester, Andrea Montanari and Christian Szegedy.

References

Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky. High-dimensional dynamics of gen-
eralization error in neural networks. Neural Networks, 132:428–446, Oct 2020. ISSN 18792782.
doi: 10.1016/j.neunet.2020.08.022. URL https://arxiv.org/abs/1710.03667.

Lara B. Anderson, Volker Braun, Robert L. Karp, and Burt A. Ovrut. Numerical Hermitian
Yang-Mills connections and vector bundle stability in heterotic theories. Journal of High En-
ergy Physics, 2010(6), Apr 2010a. ISSN 11266708. doi: 10.1007/JHEP06(2010)107. URL
http://arxiv.org/abs/1004.4399.

Lara B. Anderson, James Gray, Dan Grayson, Yang Hui He, and André Lukas. Yukawa couplings
in heterotic compactification. Communications in Mathematical Physics, 297(1):95–127, Apr
2010b. ISSN 00103616. doi: 10.1007/s00220-010-1033-8. URL http://arxiv.org/
abs/0904.2186.

Lara B. Anderson, Volker Braun, and Burt A. Ovrut. Numerical Hermitian Yang-Mills connec-
tions and Kähler cone substructure. Journal of High Energy Physics, 2012(1), Mar 2012. ISSN
11266708. doi: 10.1007/JHEP01(2012)014. URL http://arxiv.org/abs/1103.3041.

Lara B. Anderson, Mathis Gerdes, James Gray, Sven Krippendorf, Nikhil Raghuram, and Fabian
Ruehle. Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning. De-
cember 2020. URL https://arxiv.org/abs/2012.04656v1.

Anthony Ashmore. Eigenvalues and eigenforms on Calabi-Yau threefolds. arXiv:2011.13929 [hep-
th], November 2020. URL http://arxiv.org/abs/2011.13929. arXiv: 2011.13929.

Anthony Ashmore, Yang Hui He, and Burt A. Ovrut. Machine Learning Calabi–Yau Metrics.
Fortschritte der Physik, 68(9), Oct 2020. ISSN 15213978. doi: 10.1002/prop.202000068. URL
https://arxiv.org/abs/1910.08605.

Paul S. Aspinwall, Tom Bridgeland, Alastair Craw, Michael R. Douglas, Anton Kapustin, Gre-
gory W. Moore, Mark Gross, Graeme Segal, Balázs Szendröi, and P.M.H. Wilson. Dirichlet
branes and mirror symmetry, volume 4 of Clay Mathematics Monographs. AMS, Providence,
RI, 2009.

16

https://arxiv.org/abs/1710.03667
http://arxiv.org/abs/1004.4399
http://arxiv.org/abs/0904.2186
http://arxiv.org/abs/0904.2186
http://arxiv.org/abs/1103.3041
https://arxiv.org/abs/2012.04656v1
http://arxiv.org/abs/2011.13929
https://arxiv.org/abs/1910.08605

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences of the United States of America, 116(32):15849–15854, Dec 2019. ISSN 10916490.
doi: 10.1073/pnas.1903070116. URL https://arxiv.org/abs/1812.11118.

Albert S. Berahas, Jorge Nocedal, and Martin Takáč. A multi-batch L-BFGS method for machine
learning. Advances in Neural Information Processing Systems, pages 1063–1071, May 2016.
ISSN 10495258. URL http://arxiv.org/abs/1605.06049.

Bo Berndtsson. Convexity on the space of Kähler metrics. Annales de la faculté des sciences de
Toulouse Mathématiques, 22(4):713–746, 2013. ISSN 0240-2963. doi: 10.5802/afst.1387.

C.M. Bishop. Pattern Recognition and Machine Learning: All ”just the Facts 101” Material.
Information science and statistics. Springer (India) Private Limited, 2013. ISBN 9788132209065.

Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computa-
tion. Springer-Verlag New York, 1 edition, 1998. ISBN 978-0-387-98281-6. doi: 10.1007/
978-1-4612-0701-6.

Volker Braun, Tamaz Brelidze, Michael R. Douglas, and Burt A. Ovrut. Eigenvalues and eigen-
functions of the scalar Laplace operator on Calabi-Yau manifolds. Journal of High Energy
Physics, 2008(7), May 2008a. ISSN 11266708. doi: 10.1088/1126-6708/2008/07/120. URL
http://arxiv.org/abs/0805.3689.

Volker Braun, Tamaz Brelidze, Michael R. Douglas, and Burt A. Ovrut. Calabi-Yau metrics for
quotients and complete intersections. Journal of High Energy Physics, 2008(5), Dec 2008b.
ISSN 11266708. doi: 10.1088/1126-6708/2008/05/080. URL http://arxiv.org/abs/
0712.3563.

R S Bunch and Simon K Donaldson. Numerical approximations to extremal metrics on toric sur-
faces. Handbook of geometric analysis. {N}o. 1, 7:1–28, Mar 2008. URL http://arxiv.
org/abs/0803.0987.

Philip Candelas and Xenia C. de la Ossa. Comments on conifolds. Nuclear Physics, Section B, 342
(1):246–268, 1990. ISSN 05503213. doi: 10.1016/0550-3213(90)90577-Z.

Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. An exactly soluble su-
perconformal theory from a mirror pair of Calabi-Yau manifolds. Physics Letters B, 258(1-2):
118–126, 1991. ISSN 03702693. doi: 10.1016/0370-2693(91)91218-K.

Grigorios G. Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Jiankang Deng,
and Stefanos Zafeiriou. Π−nets: Deep polynomial neural networks. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 7323–7333,
Mar 2020. ISSN 10636919. doi: 10.1109/CVPR42600.2020.00735. URL https://arxiv.
org/abs/2003.03828.

Wei Cui and James Gray. Numerical metrics, curvature expansions and Calabi-Yau manifolds.
Journal of High Energy Physics, 2020(5):1568–1575, Dec 2020. ISSN 10298479. doi: 10.1007/
JHEP05(2020)044. URL https://arxiv.org/abs/1912.11068.

17

https://arxiv.org/abs/1812.11118
http://arxiv.org/abs/1605.06049
http://arxiv.org/abs/0805.3689
http://arxiv.org/abs/0712.3563
http://arxiv.org/abs/0712.3563
http://arxiv.org/abs/0803.0987
http://arxiv.org/abs/0803.0987
https://arxiv.org/abs/2003.03828
https://arxiv.org/abs/2003.03828
https://arxiv.org/abs/1912.11068

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems, 2(4):303–314, 1989. ISSN 09324194. doi: 10.1007/BF02551274.

S. K. Donaldson. Some numerical results in complex differential geometry. Pure and Applied
Mathematics Quarterly, 5(2):571–618, Dec 2009. ISSN 15588602. doi: 10.4310/PAMQ.2009.
v5.n2.a2. URL https://arxiv.org/abs/math/0512625.

Charles Doran, Matthew Headrick, Christopher P. Herzog, Joshua Kantor, and Toby Wiseman.
Numerical Kähler-Einstein metric on the third del Pezzo. Communications in Mathematical
Physics, 282(2):357–393, Mar 2008. ISSN 00103616. doi: 10.1007/s00220-008-0558-6. URL
https://arxiv.org/abs/hep-th/0703057.

Michael R. Douglas. Calabi-Yau metrics and string compactification. Nuclear Physics B, 898:
667–674, Mar 2015. ISSN 05503213. doi: 10.1016/j.nuclphysb.2015.04.009. URL https:
//arxiv.org/abs/1503.02899.

Michael R. Douglas. Holomorphic feedforward networks. 2020. To appear in the Pure and Applied
Mathematics Quarterly special issue in honor of Professor Bernie Shiffman.

Michael R. Douglas, Robert L. Karp, Sergio Lukic, and René Reinbacher. Numerical solution
to the hermitian Yang-Mills equation on the Fermat quintic. Journal of High Energy Physics,
2007(12):083–083, Dec 2007. ISSN 1029-8479. doi: 10.1088/1126-6708/2007/12/083. URL
https://arxiv.org/abs/hep-th/0606261.

Michael R. Douglas, Robert L. Karp, Sergio Lukic, and Reń Reinbacher. Numerical Calabi-Yau
metrics. Journal of Mathematical Physics, 49(3), Dec 2008. ISSN 00222488. doi: 10.1063/1.
2888403. URL http://arxiv.org/abs/hep-th/0612075.

Weinan E and Bing Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm
for Solving Variational Problems. Communications in Mathematics and Statistics, 6(1), Sep
2018. ISSN 2194671X. doi: 10.1007/s40304-018-0127-z. URL https://arxiv.org/
abs/1710.00211.

Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke. Four-dimensional wall-crossing via
three-dimensional field theory. Communications in Mathematical Physics, 299(1):163–224, Jul
2010. ISSN 00103616. doi: 10.1007/s00220-010-1071-2. URL https://arxiv.org/
abs/0807.4723.

Anna Golubeva, Behnam Neyshabur, and Guy Gur-Ari. Are wider nets better given the same num-
ber of parameters? Oct 2020. URL http://arxiv.org/abs/2010.14495.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley Classics Library. Wiley, 2014.
ISBN 9781118626320.

Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philipp Zimmermann. Space-time error esti-
mates for deep neural network approximations for differential equations. arXiv, Aug 2019. URL
https://arxiv.org/abs/1908.03833.

18

https://arxiv.org/abs/math/0512625
https://arxiv.org/abs/hep-th/0703057
https://arxiv.org/abs/1503.02899
https://arxiv.org/abs/1503.02899
https://arxiv.org/abs/hep-th/0606261
http://arxiv.org/abs/hep-th/0612075
https://arxiv.org/abs/1710.00211
https://arxiv.org/abs/1710.00211
https://arxiv.org/abs/0807.4723
https://arxiv.org/abs/0807.4723
http://arxiv.org/abs/2010.14495
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1908.03833

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Matthew Headrick and Ali Nassar. Energy functionals for Calabi-Yau metrics. Advances in
Theoretical and Mathematical Physics, 17(5):867–902, Aug 2013. ISSN 10950753. doi:
10.4310/ATMP.2013.v17.n5.a1. URL https://arxiv.org/abs/0908.2635.

Matthew Headrick and Toby Wiseman. Numerical ricci-flat metrics on K3. Classical and Quantum
Gravity, 22(23):4931–4960, Jun 2005. ISSN 02649381. doi: 10.1088/0264-9381/22/23/002.
URL http://arxiv.org/abs/hep-th/0506129.

Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun
Vafa, Ravi Vakil, and Eric Zaslow. Mirror symmetry, volume 1 of Clay Mathematics Monographs.
American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA,
2003. ISBN 0-8218-2955-6. With a preface by Vafa.

Stephan Hoyer, Jascha Sohl-Dickstein, and Sam Greydanus. Neural reparameterization improves
structural optimization. arXiv, Sep 2019. URL https://arxiv.org/abs/1909.04240.

D. Huybrechts. Complex Geometry: An Introduction. Universitext (Berlin. Print). Springer, 2005.
ISBN 9783540212904.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. 32nd International Conference on Machine Learning, ICML
2015, 1:448–456, Feb 2015. URL http://arxiv.org/abs/1502.03167.

Shamit Kachru, Arnav Tripathy, and Max Zimet. K3 metrics. Jun 2020. URL http://arxiv.
org/abs/2006.02435.

Taehwan Kim and Tülay Adalı. Approximation by fully complex multilayer perceptrons. Neural
computation, 15(7):1641–1666, 2003.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 3rd Inter-
national Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings,
Dec 2015. URL https://arxiv.org/abs/1412.6980.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45:503–528, 1989. URL https://link.springer.com/
content/pdf/10.1007{%}2FBF01589116.pdf.

Stefano Sarao Mannelli, Eric Vanden-Eijnden, and Lenka Zdeborová. Optimization and Gener-
alization of Shallow Neural Networks with Quadratic Activation Functions. Jun 2020. URL
http://arxiv.org/abs/2006.15459.

Johannes Müller and Marius Zeinhofer. Deep Ritz Revisited. arXiv, Dec 2019. URL https:
//arxiv.org/abs/1912.03937.

Reza Seyyedali. Numerical algorithm for finding balanced metrics on vector bundles. Asian Journal
of Mathematics, 13(3):311–322, Apr 2009. ISSN 10936106. doi: 10.4310/AJM.2009.v13.n3.a3.
URL http://arxiv.org/abs/0804.4005.

19

https://arxiv.org/abs/0908.2635
http://arxiv.org/abs/hep-th/0506129
https://arxiv.org/abs/1909.04240
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/2006.02435
http://arxiv.org/abs/2006.02435
https://arxiv.org/abs/1412.6980
https://link.springer.com/content/pdf/10.1007{%}2FBF01589116.pdf
https://link.springer.com/content/pdf/10.1007{%}2FBF01589116.pdf
http://arxiv.org/abs/2006.15459
https://arxiv.org/abs/1912.03937
https://arxiv.org/abs/1912.03937
http://arxiv.org/abs/0804.4005

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Bernard Shiffman and Steve Zelditch. Distribution of zeros of random and quantum chaotic sections
of positive line bundles. Communications in Mathematical Physics, 200(3):661–683, Mar 1999.
ISSN 00103616. doi: 10.1007/s002200050544. URL https://arxiv.org/abs/math/
9803052.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Felix Voigtlaender. The universal approximation theorem for complex-valued neural networks.
arXiv:2012.03351 [cs, math, stat], December 2020. URL http://arxiv.org/abs/2012.
03351. arXiv: 2012.03351.

Chiyuan Zhang, Benjamin Recht, Samy Bengio, Moritz Hardt, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. 5th International Conference on Learn-
ing Representations, ICLR 2017 - Conference Track Proceedings, Nov 2017. URL http:
//arxiv.org/abs/1611.03530.

20

https://arxiv.org/abs/math/9803052
https://arxiv.org/abs/math/9803052
http://arxiv.org/abs/2012.03351
http://arxiv.org/abs/2012.03351
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Appendix A. Plots and tables

������

0.05

0.10

0.15

0.20

(a)

������

0.05

0.10

0.15

0.20

(b)

Figure 1: Distance to singular CY as function of ψ, φ in Equation (34) (Left) and ψ, α in Equa-
tion (35) (Right)

Figure 2: The training curves for Equation (3) with ψ = 0.5, trained with Adam optimizer and
MAPE loss. The data for k2 500 500 500 1 was recorded every 10 epochs.

21

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

−6

−4

−2

0.05 0.10 0.15 0.20
dist

lo
g1

0(
E

_t
es

t)

layers

2

3

4

50_50_1

70_70_70_1

300_300_300_1

est8

log10(E_test) vs f1 distance

Figure 3: Mean testing (η − 1)2 function of dsing in f1 Equation (34) with k = 2, 3, 4, the extrapo-
lated k = 8, and three neural network models

−6

−4

−2

0.05 0.10 0.15 0.20

dist

lo
g

1
0

(E
_

te
s
t)

layers

2

3

4

50_50_1

70_70_70_1

300_300_300_1

est8

log10(E_test) vs f2 distance

Figure 4: Mean testing (η − 1)2 function of dsing in f2 Equation (35) with k = 2, 3, 4, the extrapo-
lated k = 8, and three neural network model

22

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

−7.5

−5.0

−2.5

−10.0 −7.5 −5.0 −2.5
log(E_train)

lo
g(

E
_t

es
t)

2.0

2.5

3.0

3.5

4.0
layers

fun

f1

f2

(a) log(E test) vs log(E train) with L-BFGS

−6

−5

−4

−3

0.05 0.10 0.15 0.20
dist

lo
g1

0(
E

_t
es

t)

npairs

1000

16000

4000

8000

NA

(b) f1 log(E test) vs dist for 300 300 300 1,
L-BFGS and different numbers of point
groups (each with five points). The ”NA”
entry is the extrapolated FS accuracy at
k = 8.

Figure 5: The overparameterization of L-BFGS

Table 1: A summary of the average log10(E train) and log10(E train) over runs of different dis-
tances

func distance layers n params n pts lbfgs 〈log10(E train)〉 〈log10(E test)〉
f1 <0.1 50 50 1 3800 100000 -3.07 -3.00
f1 >=0.1 50 50 1 3800 100000 -3.17 -3.14
f1 <0.1 70 70 70 1 11620 100000 -5.02 -4.86
f1 >=0.1 70 70 70 1 11620 100000 -5.45 -5.40
f1 <0.1 300 300 300 1 187800 80000 -5.94 -4.89
f1 >=0.1 300 300 300 1 187800 80000 -5.78 -5.38
f2 <0.1 50 50 1 3800 100000 -2.22 -2.18
f2 >=0.1 50 50 1 3800 100000 -3.03 -3.01
f2 <0.1 70 70 70 1 11620 100000 -3.15 -3.01
f2 >=0.1 70 70 70 1 11620 100000 -4.68 -4.62
f2 <0.1 300 300 300 1 187800 20000 -5.86 -4.37
f2 >=0.1 300 300 300 1 187800 20000 -6.11 -5.48

23

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

Appendix B. Reviews of the concepts

B.1. Complex and Kähler geometry

This is a very brief introduction meant for readers familiar with real differential geometry and the
concepts of manifolds, tensor fields, differential forms, Riemannian metrics, and curvature.

A complex manifold M is a topological space which is locally similar to the d-dimensional
space Cd. One can define it in terms of coordinate patches Uα whose union is M , and coordinate
maps Zα which are complex diffeomorphisms between Uα and a contractible subset of Cd. As a
linear space, Cd ∼= R2d, with coordinates Zi = Xi + iY i, and thus every complex manifold is also
a real manifold. But the complex coordinate systems provide additional structure, summarized by
a linear operator Jx at each point x ∈ M , which turns a tangent vector corresponding to a small
motion in the ReZi direction (and corresponding to ∂/∂ReZi) into the vector corresponding to
ImZi. These operators combine to a linear tensor operator which maps the tangent space TM →
TM , and can be denoted in tensor notation as J ij . Complex geometry can also be phrased as
a “special geometry” in which operations such as the covariant derivative preserve the complex
structure, so∇iJkl = 0. From this point of view, all of the concepts of real geometry we listed above
have the same primary definitions in complex geometry, but they satisfy additional constraints.

In complex geometry one often uses the “bar” notation for complex conjugation and tensors.
Complex conjugate coordinates are denoted (Zi)∗ or interchangeably Z̄ j̄ . Thus, a tangent space
TxM is a direct sum of a complex tangent space TC,xM with coordinate basis (∂/∂Z1, . . . , ∂/∂Zd)
and a complex conjugate tangent space with coordinate basis (∂/∂Z̄1, . . . , ∂/∂Z̄d). Here ∂/∂Zi =
1
2(∂/∂Xi− i∂/∂Y i), with the constant chosen so that ∂Zj/∂Zi = δji . We have ∂Zj/∂Z̄i = 0 and
a holomorphic function f is defined as one for which ∂f/∂Z̄i = 0∀i, generalizing the definition in
one complex dimension.

The Euclidean metric ds2 = (dX1)2 + (dY 1)2 + . . . + (dXd)2 + (dY d)2 becomes ds2 =
dZ1dZ̄1 + . . . + dZddZ̄d, This is written in tensor notation as ds2 = gij̄dZ

idZ̄ j̄ with gij̄ ≡ δi,j̄
with components 1 if the indices agree (i = j̄) and zero otherwise. A general Riemannian metric
can be written in this notation and could also have terms gijdZidZj , gīj̄dZ̄

īdZ̄ j̄ and gījdZ̄
īdZj . But

we will only consider hermitian metrics, for which the metric tensor is a positive definite hermitian
matrix. In complex notation this requires gij = gīj̄ = 0 and gīj = g∗

ij̄
.

After Cd, the next simplest example of a complex manifold is complex projective space CPd.
This can be defined in terms of patches, but the shortest and clearest definition is as a quotient
CPd ≡ {Cd+1 − 0}/ ∼. Let the complex coordinates of Cd+1 be (Z1, Z2, . . . , Zd+1), then
(Z1, Z2, . . . , Zd+1) ∼ (λZ1, λZ2, . . . , λZd+1) for every λ ∈ {C − 0}. One can cover CPd by
coordinate charts Uα, where Uα is defined by choosing the representative of ∼ in which Zα = 1.
The space CP1 is topologically identical to S2. It is C with an additional point at “infinity,” or
the Riemann sphere. The cases d > 1 are not homeomorphic to spheres. Like the spheres, each
complex projective space has a maximally symmetric metric, called the Fubini-Study metric. For
CP1 it is isomorphic to the usual round metric on S2.

This metric is best defined by first defining the more general concept of Kähler metric. This is a
metric which locally (so, in each patch Uα) is the second derivative of a real function Kα on Uα,

gij̄ =
∂2

∂Zi∂Z̄ j̄
Kα. (38)

24

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

The Kähler potential for the Euclidean metric on Cd is K =
∑

i |Zi|2. These metrics are hermitian,
but have many further special properties and simplifications.

Now, the Fubini-Study metric on CPd can be defined by the Kähler potential

K = log
d+1∑
i,j̄=1

hij̄Z
iZ̄ j̄ , (39)

where h is a (d+1)×(d+1) positive definite hermitian matrix h. Note that this is not a function on
CPd, because it is not invariant under the equivalence relation Z ∼ λZ. However since it changes
by addition of a term whose second derivative Equation (38) vanishes, it defines a metric on CPd.
One can also think of this as specifying a different (yet compatible) function in each patch Uα. One
gets the same metric on CPd for any choice of h. This is because one can always find a linear
change of coordinates Zi → LijZ

j which turns h into the identity matrix. Thus one usually speaks
of “the” Fubini-Study metric on CPd.

The main object of our studies here will be hypersurfaces in CPd. A hypersurface in Cd+1 is
the set of solutions to an equation f = 0, as in Equation (3). If f is a homogeneous polynomial, the
quotient by the relation∼ above also makes sense for the hypersurface, thus defining a hypersurface
in CPd, which is a d − 1-dimensional manifold if the condition Equation (4) is satisfied at each
point. While this construction only produces a small subset of the possible complex manifolds,
these already exhibit a great diversity of behavior. The specific choice in Equation (3) was made to
get manifolds with Ricci flat metrics, as explained in the literature.

As in real geometry, given a map M → N , one can pull back a metric on N to get a metric on
M . One can check that for Kähler geometry, this can be done by first restricting the Kähler potential
K from N to M and then applying Equation (38) on M . To relate derivatives on M to derivatives
on N , one uses ∂if |M = 0 to solve for one component of ∂i|N in terms of the others. This defines
a projection matrix such that ∂i|M = Li

′
i ∂i′ |N ,

Li
′
i =

{
δi
′
i , 1 ≤ i, i′ ≤ n,
−(∂f/∂Zi)/(∂f/∂Zn+1), i′ = n+ 1

(40)

Thus we can regard Equation (39) as defining a family of metrics on a hypersurface, depending
on the (d + 1)2 real parameters of h. Whereas these were equivalent on CPd, since the linear
transformation Zi → LijZ

j will generally not preserve the function f , these metrics are generally
distinct on M . This gives us a parameterized family of metrics on M , but of too low dimension for
our purposes. The next subsection will explain how we can get larger families.

While we will not review curvature in detail, the formulas which determine the connection and
curvature in terms of the metric are much simpler in Kähler geometry. We quote the Ricci curvature,

Rij̄ =
∂2

∂Zi∂̄Z̄ j̄
log det

i,j̄
gij̄ , (41)

which can be used to justify Equation (7).

B.2. Line bundles and the embedding method

Following Donaldson (2009), most work on numerical Calabi-Yau metrics represents the metric
using an embedding by holomorphic sections of a very ample line bundle L. This embedding is

25

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

a map into a linear space, analogous to spectral embeddings such as the “Laplacian eigenmap”
construction, but with the great advantage that the map has a simple exact form. Let us briefly
review it.

A section of a holomorphic line bundle is locally a holomorphic function. To define it globally,
we define the line bundle by choosing patches Uα on the manifold M and holomorphic transition
functions fαβ on the overlaps of patchesUα∪Uβ satisfying the consistency conditions fαβfβγfγα =
1. A section s is then a holomorphic function sα on each patch satisfying sα = fαβsβ . Now this
is ambiguous considered as a function, because we can always multiply by a set of holomorphic
functions λα defined on each patch, taking sα → λαsα. But the ratio of a pair of sections is
unambiguous. This can be rephrased as the statement that a vector of N sections is an unambiguous
map ι from M to CPN−1, since λα acts to rescale the entire vector. The very ample condition then
states that the map ι is an embedding.

Consider the quintic hypersurface defined by Equation (3). In this case, one can show that all
holomorphic line bundles extend to the ambient space CP4. These are parameterized by an inte-
ger k and denoted OCP4(k). For k ≥ 0 they have holomorphic sections, which are precisely the
homogeneous polynomials of degree k in the coordinates Zi. These form a linear space which
is denoted H0(OCP4(k)). Take k = 1 for example. H0(OCP4(1)) is the space of linear polyno-
mials in the homogeneous coordinates Zi. Its dimension, denoted h0(OCP4(1)), is 5. Similarly
h0(OCP4(k)) =

(
k+4
k

)
.

Because a section is locally just a function, it can be restricted to a submanifold, thus defining
the bundles OM (k). This map is not injective – a section proportional to the defining polynomial
f will restrict to zero. This is nontrivial for k ≥ 5 – for example for OM (5), the sections are
fifth degree polynomials with a single redundancy: if we add f to the section with an arbitrary
coefficient, since f = 0 on M , we do not change the section. To get a complete and nonredundant
basis, one needs to take this into account. But since our neural networks will generate spaces of
sections which are not complete and can be redundant, we will not bother to take this quotient.

In general, the representation of a manifold by an embedding has advantages and disadvantages.
Two disadvantages are that it can be hard to construct explicit coordinate charts, and the embedding
is an additional structure which may or may not be well suited to the problem at hand. In our case,
we will not need explicit coordinate charts; the only global operation we will need is to do integrals
on M , and this can be done by Monte Carlo (sampling points), as in Douglas et al. (2008).

The second problem is mitigated if one can find a canonical embedding, determined by the
intrinsic geometry of M and not involving other choices. This is indeed the case here: if we use a
complete basis of sections, which we can do because the basis is finite dimensional, the embedding
depends only on the choice of line bundle.

The embedding representation gives us a natural family of metrics: we choose a family of
metrics on the embedding space, and the pullback to M gives us a family on M . For an embedding
in RN , we could take the Euclidean metrics gijdxidxj parameterized by a symmetric matrix gij .
While on RN these are all related by linear change of coordinates, once we pull back to M this
generally provides a family of distinct metrics.

In the case at hand, the natural family of Kähler metrics is the family of Fubini-Study metrics
on complex projective space. As we discussed in Appendix B.1, using the original ambient space
CP4 gives us a family of metrics but of low dimension. This problem is now solved. Using our
embedding by a basis of N sections sI , and pulling back the Fubini-Study metric on CPN−1, the

26

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

embedding then leads to the Kähler potential

K = log
∑
I,J̄

hI,J̄s
I s̄j̄ (42)

where sI is a basis of N = h0(L) holomorphic sections. This gives us an N2 real dimensional
family of metrics parameterized by the hermitian matrix hI,J̄ .

B.3. Feed-forward networks

Let us briefly review the definition of a feed-forward network (FFN, also called MLP for multilayer
perceptron). It is a parameterized function

Fw : X → Y, (43)

with an input x ∈ X ∼= RD and an output y ∈ Y ∼= RD′ (we will generally take D′ = 1). We can
define it as the composition of a series of functions

Fw = W (d) ◦ θ ◦W (d−1) ◦ . . . ◦ θ ◦W (1) ◦ θ ◦W (0), (44)

where the W (i)’s are general linear transformations, and θ is a nonlinear function which acts inde-
pendently on each vector component. Explicitly,

W (i) : RDi → RDi+1 : v →W (i) v (45)

where the W (i) on the right is a rectangular matrix, D0 = D,Dd+1 = D′ and the dimensions
D1, D2, . . . of the intermediate vector spaces can be freely chosen. The function θ can be written as
a sum over a basis ea as

θ : RDi → RDi : v →
Di∑
a=1

eaθ(va) (46)

where the θ(x) on the right, called the “activation function,” maps R → R. Two popular choices
are θ(x) = tanhx, and the “ReLU” function

θReLU (x) =

{
x, x ≥ 0

0, x < 0
. (47)

One generally refers to a combination θ�W as a layer, with the final layerW (d) being an exception
in not having θ. The term “unit” is sometimes used to denote the computation which takes an input
v and produces a single component of (θ ◦W)(v), so this network will have D1 + . . .+Dd units.
The number of layers d+ 1 is the depth.

It has been shown that feed-forward networks can approximate arbitrary functions, including
complex functions Voigtlaender (2020); Kim and Adalı (2003). This is the case even for depth two
(d = 1) (Cybenko, 1989), but in this case one can need an exponentially large number of units, as
would be the case for simpler methods of interpolation (the “curse of dimension”). By using more
layers, one can gain many advantages – complicated functions can be represented with many fewer
units, and local optimization techniques are much more effective. How exactly this works is not
well understood theoretically and there are many interesting observations and hypotheses as to how
these advantages arise.

27

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

B.4. Supervised learning, sampling and data

In supervised learning, we have a data set of Ndata items, each of which is an input-output pair
(xn, yn). These are supposed to be drawn from a probability distribution P on X × Y . The goal
is to choose the function Equation (43) from X to Y which best describes the general relation P
between input and output, in the sense that it minimizes some definition of the expected error (an
objective or “loss” function). The procedure of making this choice given the data set is called
training the network.

A simple choice of objective function is the mean squared error (MSE),

E = EP
[
(fw(x)− y)2

]
. (48)

If we estimate this by evaluating it on our data set, we get the training error

Etrain =
1

Ndata

Ndata∑
n=1

(fw(xn)− yn)2. (49)

Alternatively, one can also use the mean absolute percentage error (MAPE),

E = EP
[
|fw(x)− y|

y

]
. (50)

A standard ML training procedure is the following. We start with an MLP as in Equation (15),
with the weights initialized to random values – in other words, we draw the w from some distri-
bution independent of the data. A common choice is for each matrix element w(m),im+1

im
to be an

independent Gaussian random variable with mean zero and variance 1/
√
Dm. This choice is made

so that the expected eigenvalues of the weight matrix remain order one as we vary the Dm’s.
The next step is to minimize Equation (49) as a function of the weights. A simple algorithm for

this is gradient descent, a stepwise process in which the weights at time t+1 are derived from those
at t as

w(t+ 1) = w(t)− ε(t)∂Etrain
∂w

∣∣∣∣
w=w(t)

. (51)

While this will only find a local minimum, it works better for these problems than one might have
thought. One trick for improving the quality of the result is to make the step size ε(t) decrease with
time, according to a “learning schedule” chosen empirically to get good results for the task at hand.

A variation on this procedure is “stochastic gradient descent” or SGD. This is much like Equa-
tion (51) except that instead of evaluating the training error Etrain on the full data set, one evaluates
it on a subset (or “batch”) of the data set, with the batch varied from one step to the next so that
their union covers the full data set. This was originally done for computational reasons but it also
turns out to produce a noise term with beneficial properties, for example in helping to escape local
minima. There are also many variations on SGD as well as other optimization algorithms, each with
advantages for certain applications. We will describe our methods in §3.2.

Once the optimization is deemed to have converged, one judges the results by estimating Equa-
tion (48). This estimate must be made by using an independent data set from that used in training
as otherwise we are rewarding our model for matching both signal and noise.10 However in most

10. In classification problems, one often uses networks with many more parameters than data points and which can
completely fit the dataset, so that the minimum of Etrain is zero! In this case Etrain is clearly a poor estimate for E .

28

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

applications we do not have any direct access to P , rather we only have an empirical data set. Thus
one starts by dividing the full data set into disjoint “training” and “testing” subsets, evaluates Equa-
tion (49) on the training set for training, and then evaluates the sum of errors over the testing set
to estimate E . The final model can be very accurate, surprisingly so when compared to expecta-
tions from standard statistical theory. Let us cite Zhang et al. (2017); Belkin et al. (2019) as two
influential recent papers which developed this point.

While our problem is not one of supervised learning, it will be useful to phrase it in terms as
similar as possible, so that we can most easily use ML software. The workflow of the supervised
learning task involves defining a set of data points (xn, yn) which are independent of the weights,
repeated evaluation of the network at each xn to get a prediction f(xn) for the corresponding yn, and
optimization of an objective function which is a sum of terms which each depend on a single data
point. The network is normally defined by concatenating layers, such as multiplication by a weight
matrix (a fully connected layer), application of an activation function, and so on. These layers are
implemented in associated software libraries, such as Keras for Tensorflow. As we explain in §3.1,
while we will have to implement some new layers for our problem, otherwise our workflow is the
same.

Appendix C. Nearly singular Calabi-Yau threefolds

As discussed in the main text, a hypersurfaceM defined as the solutions to f = 0 will be a manifold
only if ∂f = 0 everywhere on M . There is much to say about the singular case, but our computa-
tions will be for non-singular manifolds. Still, a manifold which is nearly singular in the sense we
now describe will have small cycles and a Ricci flat metric with corresponding large ratio of length
scales, which is the leading effect controlling the accuracy of our numerical metrics. Here we give
a heuristic discussion of this dependence.

The generic singularity of a hypersurface is an ordinary double point (ODP). In a small neigh-
borhood of a D = 3 ODP singularity it looks like

z2
1 + z2

2 + z2
3 + z2

4 = ε (52)

and the singular limit is ε → 0. This is usually called the conifold singularity in the string theory
literature. A Ricci-flat metric on this noncompact manifold is known (Candelas and de la Ossa,
1990) and it looks like the total space of T ∗S3, with the volume of the S3 shrinking to zero as ε3/2

when ε → 0.11 Thus the smallest length scale on this noncompact CY is L ∼ ε1/2. For ε 6= 0, the
solution of ∇f = 0 is all zi = 0, and the distance (in the Euclidean metric) from this point to the
closest solution of f = 0 is also ε1/2.

In the limit ε→ 0, the metric becomes singular, with Kähler potential

K ∼
(
z2

1 + z2
2 + z2

3 + z2
4

)4/3 (53)

near the singularity. This Kähler potential is a C2 function for which one expects the Fourier
coefficients to fall off as k−4, which is consistent with the numerical results in Headrick and Nassar
(2013). The Kähler form ω and the CY volume form dµΩ (Equation (9)) should then be C0, so one
does not expect other numerical problems besides the large ratio of scales.

11. This can be seen by writing the real and imaginary parts of Equation (52) separately. For ε > 0 real, the S3 is the
submanifold Imzi = 0.

29

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

To identify the region described by Equation (52) and ε in our equations such as Equation (34)
and Equation (35), we use an idea from Blum et al. (1998). This is to first define the distance
dZ(f,∆Z) from a given f to ∆Z , the subset of ∆ for which f(Z) = ∂f(Z) = 0 for some Z ∈ CP4.
We then minimize over Z,

d(f,∆) = min
Z∈M

d(f,∆Z). (54)

To define dZ(f,∆Z), note that the subset ofM for which f(Z) = 0 is a linear subspace, call it VZ .
Thus, we can use distance to ∆Z in the Fubini-Study metric restricted to VZ .12 Let ||f ||H be the
norm of f in this metric; a convenient way to express it is

||f ||2H = N
∫
C5

e−|Z|
2 |f(Z)|2, (55)

while the constraints ∂ih = 0 are best expressed in terms of a kernel

Kn(Z, Z̄) = HIJ̄Z
I Z̄ J̄ =

1

n!
(
∑
i

ZiZ̄ī)
n. (56)

Now, let ci ∈ V be the constraints ∂iZI , with inner products

Lij̄ = ci ·H · cj̄ (57)

=
∂

∂Zi
∂

∂Z̄ j̄
Kn(Z, Z̄)

∣∣∣∣
Z=Z0

(58)

= δij̄Kn−1(Z, Z̄) + Z̄iZj̄Kn−2(Z, Z̄). (59)

Then the minimal distance from f to ∆Z0 is the norm in the subspace given by the projection
P = (L−1)ij̄H · cicj̄ .

sin2 θ =
〈f, Pf〉H
||f ||2H

=
(L−1)ij̄∂if∂j̄ f̄ |Z=Z0

||f ||2H
. (60)

The denominator is independent of Z0, and the matrix δij̄ + (n − 1)Z̄iZj̄/|Z|2 is easy to invert.
This will give combinations |Zi∂if |2(n− 1)/n = (n− 1)n|f(Z0)|2 = 0 and finally

sin θ ∝ d ≡ min
Z0∈M

|∂if(Z0)|H
||f ||H |Z0|n−1

. (61)

For our purposes it suffices to take the right hand side of this equation as our definition of distance,
and to compute it in examples using numerical minimization.

We plot Eq. (61) for the Dwork quintics in Figure 6. Besides the conifold point at ψ = −5,
there is a local minimum near ψ = 5, which fits with the feature seen in the plot of curvature versus
ψ in Cui and Gray (2020). This is the point on the positive real axis closest to the conifold point,
perhaps reached by following a path like ψ = 5eiθ. It would be nice to check this against the known
exact metric for this example Candelas et al. (1991).

Heat map plots of Eq. (61) for the other defining functions appear in Figure 1(a)subfigure and
Figure 1(b)subfigure.

12. This definition of distance depends on the choice of FS metric. In Blum et al. (1998) it was used to get expectations
under a probability measure on hypersurfaces which also depended on this choice. But for our application, this is
a deficiency. The symmetric choice we made gives reasonable results, but it would be interesting to remove this
dependence, perhaps by using the balanced FS metric or best approximate Ricci flat metric adapted to M .

30

NUMERICAL CALABI-YAU METRICS FROM HOLOMORPHIC NETWORKS

-5 5

0.10

0.15

0.20

Figure 6: Distance to discriminant locus for the Dwork quintics, Eq. (3). X axis is ψ, Y axis is d in
Eq. (61).

31

	 Introduction
	 Related work

	 Numerical complex geometry using machine learning methods
	 Brief review of the Calabi-Yau metric problem
	 The embedding method and geometric quantities
	 Multilayer holomorphic embeddings
	 Bihomogeneous embeddings

	 Implementation
	 General implementation
	 Implementation details

	 Results
	Experiments and Observations
	 More theoretical issues

	 Conclusions and further directions
	Plots and tables
	 Reviews of the concepts
	 Complex and Kähler geometry
	 Line bundles and the embedding method
	 Feed-forward networks
	 Supervised learning, sampling and data

	 Nearly singular Calabi-Yau threefolds

