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Abstract
We use explicit representation formulas to show that solutions to certain partial differential equa-
tions lie in Barron spaces or multilayer spaces if the PDE data lie in such function spaces. Conse-
quently, these solutions can be represented efficiently using artificial neural networks, even in high
dimension. Conversely, we present examples in which the solution fails to lie in the function space
associated to a neural network under consideration.

1. Introduction

Neural network-based machine learning has had impressive success in solving very high dimen-
sional PDEs, see e.g. E et al. (2017); E and Yu (2018); Han et al. (2018); Sirignano and Spiliopoulos
(2018); Chaudhari et al. (2018); Wang et al. (2018); Raissi et al. (2019); Bhattacharya et al. (2020);
Mao et al. (2020); Kissas et al. (2020); Sun et al. (2020); Chen et al. (2020) and many others. The
fact that such high dimensional PDEs can be solved with relative ease suggests that the solutions
of these PDEs must have relatively low complexity in some sense. The important question that we
need to address is: How can we quantify such low complexity?

In low dimension, we are accustomed to using smoothness to quantify complexity. Roughly
speaking, a function has low complexity if it can be easily approximated using polynomials or
piecewise polynomials, and the convergence rate of the polynomial or piecewise polynomial ap-
proximation is characterized by the smoothness of the target function. A host of function spaces
have been proposed, such as the Sobolev spaces, Besov spaces, Hölder- and Ck spaces, etc, to
quantify the smoothness of functions. Based on these, the analysis of numerical approximations to
solutions of PDEs can be carried out in three steps:

1. Approximation theory: relating the convergence rate to the function class that the target func-
tion belongs to. This stage is purely about function approximation. No PDEs are involved.

2. Regularity theory: characterizing the function class that solutions of a given PDE belong to.
This is pure PDE theory.
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3. Numerical analysis: proving that a numerical algorithm is convergent, stable, and characterize
its order of accuracy.

We aim to carry out the same program in high dimension, with polynomials and piecewise poly-
nomials replaced by neural networks. In high dimension, the most important question is whether
there is a “curse of dimensionality”, i.e. whether the convergence rate deteriorates as the dimen-
sionality is increased.

In this regard, our gold standard is the Monte Carlo algorithm for computing expectations. The
task of approximation theory is to establish similar results for function approximation for machine
learning models, namely, given a particular machine learning model, one would like to identify the
class of functions for which the given machine learning model can approximate with dimension-
independent convergence rate. It is well known that the number of parameters of a neural network
to approximate a general Ck-function in dimension d in the L1-topology to accuracy " generally
scales like "�

d

k Yarotsky (2017) (up to a logarithmic factor). Classical (Hölder, Sobolev, Besov, . . . )
function spaces thus face the “curse of dimensionality” and therefore are not suited for our purpose.

However, Monte Carlo-like convergence rates can indeed be established for the most interest-
ing machine learning models by identifying the appropriate function spaces. For the random fea-
ture model, the appropriate function spaces are the extensions of the classical reproducing kernel
Hilbert space E et al. (2020). For two-layer neural networks, those function spaces are the relatively
well-studied Barron spaces E et al. (2019); E and Wojtowytsch (2020a), while for deeper neural
networks, tree-like function spaces E and Wojtowytsch (2020b) seem to provide good candidates (at
least for ReLU-activated networks). These spaces combine two convenient properties: Functions
can be approximated well using a small set of parameters, and few data samples suffice to assess
whether a function is a suitable candidate as the solution to a minimization problem.

This paper is concerned in the second question listed above in high dimension. For the reasons
stated above, we must consider the question whether the solution of a PDE lie in a (Barron or
tree-like) function space if the data lie in such a space. In other words, if the problem data are
represented by a neural network, can the same be said for the solution, and is the solution network
of the same depth as the data network or deeper? We believe that these should be the among the
principal considerations of a modern regularity theory for high-dimensional PDEs. We note that a
somewhat different approach to a similar question is taken in Grohs et al. (2018); Hutzenthaler et al.
(2020).

In this paper, we show that solutions to three prototypical PDEs (screened Poisson equation,
heat equation, viscous Hamilton-Jacobi equation) lie in appropriate function spaces associated with
neural network models. These equations are considered on the whole space and the argument is
based on explicit representation formulas. In bounded domains on the other hand, we show that
even harmonic functions with Barron function boundary data may fail to be Barron functions, and
we discuss obstacles in trying to replicate classical regularity theory in spaces of neural networks.

While we do not claim great generality in the problems we treat, we cover some important
special cases and counterexamples. As a corollary, equations whose solutions lie in a (Barron
or tree-like) function space associated to neural networks cannot be considered as fair benchmark
problems for computational solvers for general elliptic or parabolic PDEs: If the data are represented
by a neural network, then so is the exact solution, and approximate solutions converge to the analytic
solution at a dimension-independent rate as the number of parameters approaches infinity. The
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performance is therefore likely to be much better in this setting than in potential applications without
this high degree of compatibility.

The article is structured as follows. In the remainder of the introduction, we give a brief sum-
mary of some results concerning Barron space and tree-like function spaces. In Section 2, we
consider the Poisson equation, screened Poisson equation, heat equation, and viscous Hamilton-
Jacobi equation on the whole space. In two cases, we show that solutions lie in Barron space and in
one case, solutions lie in a tree-like function space of depth four. In Section 3, we consider equa-
tions on bounded domains and demonstrate that boundary values can make a big difference from the
perspective of function representation. We also discuss the main philosophical differences between
classical function spaces and spaces of neural network functions, which a novel regularity theory
needs to account for.

1.1. Previous work

The class of partial differential equations is diverse enough to ensure that no single theory captures
the properties of all equations, and the existing literature is too large to be reviewed here. Even the
notion of what a solution is depends on the equation under consideration, giving rise to concepts
such as weak solutions, viscosity solutions, entropy solutions etc. The numerical schemes to find
these solutions are as diverse as the equations themselves. As a rule, many methods perform well
in low spatial dimension d 2 {1, 2, 3}, which captures many problems of applied science. Other
problems, such as the Boltzmann equation, Schrödinger equations for many particle systems, or
Black-Scholes equations in mathematical science, are posed in much higher dimension, and require
different methods.

In low dimension, elliptic and parabolic equations are often considered in Sobolev spaces. Finite
element methods, which find approximate solutions to a PDE in finite-dimensional ansatz spaces,
are empirically successful and allow rigorous a priori and a posteriori error analysis. The ansatz
spaces are often chosen as spaces of piecewise linear functions on the triangulation of a domain. As
a grid based method, the curse of dimensionality renders this approach unusable when the dimension
becomes moderately high.

Evading the curse of dimensionality when solving high-dimensional PDEs requires strong as-
sumptions. If the right hand side even of the Poisson equation is merely in C0,↵ or L2, the solution
cannot generally be more regular than C2,↵ or H2. These spaces are so large (e.g. in terms of
Kolmogorov width) that the curse of dimensionality cannot be evaded.

Based on a hierarchical decomposition of approximating spaces, sparse grid methods can be
used to solve equations in higher dimension. In their theoretical analysis, the role of classical
Sobolev spaces is taken by Sobolev spaces with dominating mixed derivatives (imagine spaces
where @

1

@
2

u is controlled, but @
1

@
1

u is not). These methods have been used successfully in medium
high dimension, although the a priori regularity estimates which underly classical finite element
analysis are less developed here to the best of our knowledge. An introduction can be found e.g. in
Garcke (2012).

Function classes of neural networks have a non-linear structure, which allows them to avoid the
curse of dimensionality in approximating functions in large classes where any linear model suffers
from the CoD, see e.g. Barron (1993). Following their success in data science, it is a natural question
whether they have the same potential in high-dimensional PDEs.
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It has been observed by Grohs et al. (2018); Jentzen et al. (2018); Hutzenthaler et al. (2020);
Hornung et al. (2020); Darbon et al. (2020) that deep neural networks can approximate (viscosity)
solutions to different types of partial differential equations without the curse of dimensionality,
assuming that the problem data are given by neural networks as well. Generally, proofs of these
results are based on links between the PDE and stochastic analysis, and showing that solutions to
SDEs can be approximated sufficiently well by neural networks with the Monte-Carlo rate, even in
high dimension. A more extensive list of empirical works can be found in these references.

In this article, we follow a similar philosophy of explicit representation, but we consider a more
restricted and technically much simpler setting. In this setting, we prove stronger results:

1. The neural networks we consider have one hidden layer (linear PDEs) or three hidden layers
(viscous Hamilton-Jacobi equation), and are therefore much shallower than the deep networks
considered elsewhere.

2. In certain cases, solutions to the PDEs are in Barron space. This not oly implies that they can
be approximated without the CoD, but also that integral quantities can be estimated well using
few samples, even if the solution of the PDE depends on these data samples. This follows
from the fact that the unit ball in Barron space has low Rademacher complexity.

3. On the other hand, we show by way of counterexample that the solution of the Laplace equa-
tion in the unit ball with Barron boundary data is generally not given by a Barron function,
possibly shedding light on the requirement of depth.

Our results can be viewed more in the context of function-space based regularity theory, whereas
existing results directly address the approximation of solutions without an intermediate step.

1.2. A brief review of Barron and tree-like function spaces

Two-layer neural networks can be represented as

fm(x) =
1

m

mX

i=1

ai �(w
T
i x+ bi). (1)

The parameters (ai, wi, bi) 2 R ⇥ Rd ⇥ R are referred to as the weights of the network and � :

R ! R as the activation function. In some parts of this article, we will focus on the popular ReLU-
activation function �(z) = max{z, 0}, but many arguments go through for more general activation
�.

In the infinite width limit for the hidden layer, the normalized sum is replaced by a probability
integral

f⇡(x) =

Z

Rd+2
a�(wTx+ b)⇡(da⌦ dw ⌦ db)= E

(a,w,b)⇠⇡

⇥
a�(wTx+ b)

⇤
(2)

On this space, a norm is defined by

kfkB = inf

⇢Z

Rd+2
|a|

⇥
|w|+ |b|

⇤
⇡(da⌦ dw ⌦ db) : ⇡ s.t. f = f⇡

�
.
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The formula has to be modified slightly for non-ReLU activation functions Li et al. (2020) and (E
and Wojtowytsch, 2021, Appendix A). If for example limz!±1 �(z) = ±1, we may choose

kfkB = inf

⇢Z

Rd+2
|a|

⇥
|w|+ 1

⇤
⇡(da⌦ dw ⌦ db) : ⇡ s.t. f = f⇡

�

without strong dependence on the bias variable b. We give some examples of functions in Barron
space or not in Barron space below.

The function space theory for multi-layer networks is more complicated, and results are cur-
rently only available for ReLU activation. We do not go into detail concerning the scale of tree-like
function spaces WL associated to multi-layer neural networks here, but note the following key
results.

1. W1

= B, i.e. the tree-like function space of depth 1 coincides with Barron space.

2. If f : Rk ! R and g : Rd ! Rk are functions in the tree-like function spaces W` and
WL respectively (componentwise), then the composition f � g : Rd ! R is in the tree-like
function space WL+` and the estimate

kf � gkWL+`

 max

1ik
kgikWL

kfkW`

holds.

3. In particular, the product of two functions f, g 2 WL is generally not in WL, but in WL+1

since the map (x, y) 7! xy is in Barron space (on bounded sets in R2).

All results can be found in E and Wojtowytsch (2020b). We recall the following properties of
Barron space:

1. If f 2 Hs
(Rd

) for s > d
2

+ 2, then f 2 B, i.e. sufficiently smooth functions admit a Barron
representation – see (E and Wojtowytsch, 2020a, Theorem 3.1), based on an argument in
(Barron, 1993, Section IX).

2. Barron space embeds into the space of Lipschitz-continuous functions.

3. If f 2 B, then f =

P1
i=1

fi where fi(x) = gi(Pix+ bi)

(a) gi is C1-smooth except at the origin,

(b) Pi is an orthogonal projection on a ki-dimensional subspace for some 0  ki  d� 1,

(c) bi is a shift vector.

The proof can be found in (E and Wojtowytsch, 2020a, Lemma 5.2).

4. For a Barron function f and a probability measure P on [�R,R]

d, there exist m parameters
(ai, wi, bi) 2 Rd+2 and a two-layer neural network fm as in (1) such that

kf � fmkL2
(P) 

max{1, R} kfkBp
m

(3)
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or
kf � fmkL1

[�R,R]

 d max{1, R} kfkBp
m

(4)

or

kf � fmkH1
((0,1)d)  kfkB

r
d+ 1

m
. (5)

The proof in the Hilbert space cases is based on the Maurey-Jones-Barron Lemma (e.g. (Bar-
ron, 1993, Lemma 1)), whereas the proof for L1-approximation uses Rademacher complex-
ities (see e.g. E et al. (2020)).

Example 1 Examples of Barron functions are

1. the single neuron activation function f(x) = a�(wTx+ b),

2. the `2-norm function

f(x) = cd

Z

Sd�1
�(wTx)⇡0(dw)

which is represented by the uniform distribution on the unit sphere (for ReLU activation), and

3. any sufficiently smooth function on Rd
.

Examples of functions which are not Barron are all functions which fail to be Lipschitz continu-

ous and functions which are non-differentiable on a set which is not compatible with the structure

theorem, e.g. f(x) = max{x
1

, . . . , xd} and f(x) = dist`2(x, S
d�1

).

Remark 1 Define the auxiliary norm

kfkaux :=

Z

Rd

| ˆf |(⇠) · |⇠|d⇠

on functions f : Rd ! R. According to Barron (1993), the estimate kfkB  kfkaux holds, and

many early works on neural networks used k ·kaux in place of the Barron norm. Unlike the auxiliary

norm, the modern Barron norm is automatically adaptive to the activation function � and Barron

space is much larger than the set of functions on which the auxiliary norm is finite (which is a

separable subset of the non-separable Barron space).

Most importantly, the auxiliary norm is implicitly dimension-dependent. If g : Rk ! R is a

Barron function and f : Rd ! R is defined as f(x) = g(x
1

, . . . , xk) for k < d, then the auxiliary

norm of f is automatically infinite (since f does not decay at infinity). Even when considering

bounded sets and extension theorems, the auxiliary norm is much larger than the Barron norm,

which allows us to capture the dependence on low-dimensional structures efficiently.

2. Prototypical equations

In this article, we study four PDEs for which explicit representation formulas are available. The pro-
totypical examples include a linear elliptic, linear parabolic, and viscous Hamilton-Jacobi equation.
The key-ingredient in all considerations is a Green’s function representation with a translation-
invariant and rapidly decaying Green’s function.
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2.1. The screened Poisson equation

The fundamental solution G(x) = cd |x|2�d of ��G = �
0

on Rd (for d > 2) decays so slowly at
infinity that we can only use it to solve the Poisson equation

��u = f (6)

if f is compactly supported (or at least decays rapidly at infinity), since otherwise the convolution
integral fails to exist. Neither condition is particularly compatible with the superposition represen-
tation of one-dimensional profiles which is characteristic of neural networks. As a model problem
for second order linear elliptic equations, we therefore study the screened Poisson equation

(��+ �2)u = f (7)

on the whole space Rd for some � > 0. Solutions are given explicitly as convolutions with the
fundamental solution of (7) and – for large dimension – as superpositions of one-dimensional solu-
tions..

Lemma 2 Assume that f 2 B in dimension d and u solves (7). Then

kukB  ��2 kfkB (8)

if � has finite limits at ±1 and

kukB 
⇥
��2

+ 2��3

⇤
kfkB. (9)

if � = ReLU.

Proof [Proof of Lemma 2] For d = 3, the fundamental solution G(x) =

e��|x|

4⇡ |x| of the screened
Poisson equation (7) is well-known. Observe that

1

4⇡

Z

R3
e��|y||y| dy =

Z 1

0

e��rr�1 r3�1

dr

= ��2

Z 1

0

r�r e��r � dr

= ��2

1

4⇡

Z

R3
e��|y|

dy = 2��3.

Thus, if d = 3 and f(x) = a�(w
1

x
1

+ b) we have

u(x) =
a

4⇡

Z

R3

�(w
1

(x
1

� y
1

) + b) e�� |y|

|y| dy

kukB  |a|
Z

R3

�
|w

1

+ |b|
 
| e

�� |y|

|y| + |w
1

| |y| e
�� |y|

|y| dy


|a|
�
|w

1

+ |b|
 

�2
+

2 |a| |w
1

|
�3

.
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If � is bounded, the bias term is replaced by 1.
In arbitrary dimension, the unit ball in Barron space is the closed convex hull of functions of

the form f(x) = a�(wTx + b) such that |a|
⇥
|w| + |b|

⇤
 1 (ReLU case). When considering

the Euclidean norm on Rd, after a rotation, we note that the solution u of (7) with right hand side
a�(wT ·+b) satisfies

kukB  |a| {|w|+ |b|}
⇥
��2

+ 2��3

⇤

since u only depends on wTx and is constant in all directions orthogonal to w. The estimate follows
in the general case by linearity.

2.2. The Poisson equation

While the importance of the forcing term �u in the argument above is clear, it is important to ask
whether the term is in fact necessary or just convenient. We show that in many cases, it is the latter,
at least in naive models. Consider the equation

��u = ReLU(x
1

) (10)

which is solved by

u(x) = �max{0, x
1

}3

6

+ h(x), �h(x) = 0. (11)

Since any function u in ReLU-Barron space grows at most linearly at infinity, max{0,x1}3
6

is not
a ReLU-Barron function. This fast growth cannot be compensated by the free harmonic function
h. Note that h could grow at most cubically at infinity and would therefore have to be a cubic
polynomial by Liouville’s theorem Boas and Boas (1988). Then

lim

t!1

h(te
1

)

h(�te
1

)

= ±1

depending on the degree of h, so u could not be bounded by a subcubic function in both half spaces
{x

1

> 0} and {x
1

< 0}. A very similar argument goes through for activation functions � for
which the limits limz!±1 �(z) exist and are finite (with quadratic polynomials instead of cubics).
Notably, activation functions � 2 {sin, cos, exp} do not suffer the same obstacle since there second
anti-derivative grows at the same rate as the function itself. Considering these activation functions
would likely prove fruitful, but take us back into the classical field of Fourier analysis. We pursue
a different route and allow the right hand side and solution of a PDE to be represented by neural
networks with different activation functions.

Consider a C2-smooth activation function �. Then

�[a�(wTx+ b)] = a |w|2 �00(wTx+ b).

In particular, for 0 < ↵ < 1 we have
��
�[a�(wTx+ b)]

��
L1

(Rd

)

= |a| |w|2 k�00kL1 ,
⇥
�[a�(wTx+ b)]

⇤
C0,↵

(Rd

)

= |a| |w|2+↵
[�00]C0,↵ .

For ReLU activation and functions in Barron space, the Laplacian of a�(wTx + b) is merely a
(signed) Radon measure. On the other hand, if � 2 C2,↵

(R) is bounded and has bounded first and
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second derivatives, then we can make sense of the Laplacian in the classical sense. The same is true
for the superposition

f⇡(x) =

Z

R⇥Rd⇥R
a�(wTx+ b)⇡(da⌦ dw ⌦ db)

if the modified Barron norm
Z

|a| [|w|2+↵
+ 1]⇡(da⌦ dw ⌦ db) (12)

is finite. Unlike applications in data science, most settings in scientific computing require the ability
to take derivatives, at least in a generalized sense. For elliptic problems, it seems natural to consider
neural networks with different activation functions to represent target function and solution to the
PDE:

f(x) =

Z
a�00(wTx+ b) d⇡

u(x) =

Z
ã�(w̃ +

˜b) d⇡̃

where Z
|ã| [|w̃|2+↵

+ 1]d⇡̃ < 1,

Z |a|
|w|2 [|w|

2+↵
+ 1]d⇡ < 1.

All considerations were in the simplest setting of the Laplace operator on the whole space. We will
discuss the influence of boundary values below.

2.3. The heat equation

Parabolic equations more closely resemble the screened Poisson equation than the Poisson equation:
The fundamental solution decays rapidly at infinity, and no fast growth at infinity is observed. The
(physical) solution u does not grow orders of magnitude faster than the initial condition u

0

at any
positive time. Moreover, the heat kernel is a probability density for any time and in any dimension,
so no dimension-dependent factors are expected.

As a prototypical example of a parabolic equation, we consider the heat equation
⇢

(@t ��)u = f t > 0

u = u
0

t = 0

. (13)

The solution is given as the superposition of the solution of the homogeneous equation with non-
zero initial values and the solution of the inhomogeneous solution with zero initial value:

u(t, x) = uhom(t, x) + uinhom(t, x)

=

1

(4⇡t)d/2

Z

Rd

u
0

(y) exp

✓
� |x� y|2

4t

◆
dy

+

Z t

0

1

(4⇡(t� s))d/2

Z

Rd

f(s, y) exp

✓
� |x� y|2

4(t� s)

◆
dy.

9
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Lemma 3 Lef f be a ReLU-Barron function of t and x. Then uhom is a Barron function of x andp
t with Barron norm

kuhomkB  2 kfkB
For fixed time t > 0, uhom and uinhom are Barron functions of x with

kuhom(t, ·)kB 
⇥
1 +

p
t
⇤
, kuhom(t, ·)kB 


t+

2

3

t3/2 +
t2

2

+

2

5

t5/2
�
kfkB.

The proof is a direct calculation using the Green’s function. It is presented in the appendix.

Remark 4 The dependence on

p
t is a consequence of the parabolic scaling. The exponent t5/2

occurs because the Barron norm of f(t, ·) as a function of x scales like max{1, t} in the worst case

(the time variable, now a constant, is absorbed into the bias). A further factor of t stems from the

increasing length of the interval over which the time-integral in the definition of uinhom is given.

The same argument applies under the weaker assumption that the source term f is in the

Bochner space L1�
(0,1);B(Rd

)

�
with the stronger bound kuinhom(t, ·)kB  C

⇥
t+t3/2

⇤
. Also in

Barron-spaces for bounded and Lipschitz-continuous activation, the exponent 5/2 can be lowered

to 3/2 since the size of the bias term does not enter the Barron norm.

We therefore can efficiently solve the homogeneous heat equation for a Barron initial condition
in both space and time using two-layer neural networks. For the heat equation with a source term,
we can solve efficiently for the heat distribution at a fixed finite time t > 0.

2.4. A viscous Hamilton-Jacobi equation

All PDEs we previously considered are linear, and we showed that if the right hand side is in a
suitable Barron space, then so is the solution. This is non-surprising as the solution of one of these
equations with a ridge function right hand side has a ridge function solution. By linearity, the same is
true for superpositions of ridge functions. This structure is highly compatible with two-layer neural
networks, which are superpositions of a specific type of ridge function. The linear equations are
invariant under rescalings (and rotations), so all problems are reduced to ODEs or 1+1-dimensional
PDEs.

The same argument cannot be applied to non-linear equations. For our final example, we study
the viscous Hamilton-Jacobi equation

ut ��u+ |ru|2 = 0, (14)

(@t ��)u =

vt
�v

� div

✓
rv

�v

◆
=

vt
�v

� �v

�v

for which an explicit formula is available. If v solves vt ��v = 0, then u = log(�v) solves

(@t ��)u = �vt
v
� div

✓
rv

�v

◆
= �(@t ��)u

v
� |rv|2

v2
= 0�

��r log(�v)
��2

= �|ru|2.

Thus the solution u of (14) with initial condition u(0, ·) = u
0

is given by

u(t, x) = � log

✓
1

(4⇡t)d/2

Z

R
exp

✓
� |x� y|2

4t

◆
exp (�u

0

(y)) dy

◆
.
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Lemma 5 Assume that u
0

: Rd ! [��,�+] is a Barron function. Then the solution u of (14) as a

function of

p
t and x is in the tree-like function space with 3 hidden layers and

kukW3  exp(�
+

� ��) ku0kB.

Proof Recall that due to (E and Wojtowytsch, 2020a, Section 4.1) we have

1. exp : [��,�+] ! R is a Barron function with Barron norm  exp(�
+

) � exp(��) 
exp(�

+

), and

2. log : [��, �+] ! R is a Barron function with Barron norm 1

��
� 1

�+
 1

��
for any 0 < �� <

�
+

< 1.

The estimates in this precise form hold for ReLU activation, but similar estimates can easily be
obtained for more general �. However, a function space theory is not yet available for more general
�.

If �u
0

: Rd ! [��,�+] has Barron norm ku
0

kB(Rd

)

 C
0

, then exp(�u
0

) is a function
with tree-like three-layer norm  exp(�

+

)C
0

. Using the same change of variables as for the heat
equation, we find that

F (t, x) =
1

(4⇡t)d/2

Z

R
exp

✓
� |x� y|2

4t

◆
exp (�u

0

(y)) dy

is a three-layer tree-like function of
p
t and x. We conclude that u is a tree-like four-layer function

of
p
t and x with norm

kukW3
(Rd

)

 1

exp(��)
exp(�

+

)C
0

= exp(�
+

� ��)C0

.

So a viscous Hamilton-Jacobi equation whose initial condition is a bounded Barron function can
be solved using a four-layer ReLU-network (but the parameters may be very large if the oscillation
of u

0

is not small).

3. On the influence of boundary values

3.1. A counterexample on the unit ball

In all examples above, a critical ingredient was the translation invariance of the PDE, which breaks
down if we consider bounded domains or non-constant coefficients. When solving ��u = 0 with
boundary values f(x

1

) on a bounded domain, the solution never depends only on the variable x
1

unless f is an affine function. The Barron space theory of PDEs on bounded domains is therefore
markedly different from the theory in the whole space.

Lemma 6 Let �(z) = max{z, 0} be ReLU-activation and g(x) = �(x
1

) a Barron function on Rd

for d � 2. Denote by Bd
the unit ball in Rd

and denote by u the solution to the PDE

⇢
��u = 0 in Bd

u = g on @Bd . (15)

If d � 3, u is not a Barron function on Bd
.

11
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Proof Assume for the sake of contradiction that u is a Barron function and d � 3. If u is a Barron
function, then u is defined (non-uniquely) on the whole space Rd by the explicit representation for-
mula. We observe that u 2 C1

loc(B
d
) and that @

1

u = @
1

g is discontinuous on the equatorial sphere
@Bd \ {x

1

= 0} since e
1

is tangent to the unit sphere at this point. Thus ⌃ := @Bd \ {x
1

= 0}
is contained in the countable union of affine spaces on which u is not differentiable. If d > 2, ⌃
is a d� 2-dimensional curved submanifold of Rd and any d� 1-dimensional subspace which does
not coincide with the hyperplane {x

1

= 0} intersects ⌃ in a set of measure zero (with respect to the
d�2-dimensional Hausdorff measure). Thus u must be non-differentiable on the entire hyper-plane
{x

1

= 0}, leading to a contradiction.

Note that this argument is entirely specific to ReLU-activation and to two-layer neural networks.
On the other hand, if � 2 C1, then also u 2 C1

(Bd
), and thus in particular u 2 B (without sharp

norm estimates). More generally, assume we wish to solve the Laplace equation on the unit ball in
d dimensions with boundary values which are a one-dimensional profile

⇢
��u(x) = 0 |x| < 1

u(x) = g(x
1

) |x| = 1.
(16)

We may decompose u = g + v where
⇢

��v = g00(x
1

) |x| < 1

v = 0 |x| = 1

. (17)

If we abbreviate (x
2

, . . . , xd) = x̂, it is clear by symmetry that v only depends on |x̂|, i.e. v =

 (x
1

, |x̂|) where
⇢

� +

d�2

y2
@
2

 = �g00(y
1

) y2
1

+ y2
2

< 1, y
2

> 0

 = 0 {y2
1

+ y2
2

= 1, y
2

> 0}
. (18)

Since solutions of the original equation are smooth, we conclude that @
2

 = 0 on {y
2

= 0},
meaning that also  = 0 on the remaining portion {y

2

= 0} \ {y2
1

+ y2
2

 1} of the boundary.
Thus the solution of Laplace’s equation with ridge function boundary values is not a ridge func-

tion, but enjoys a high degree of symmetry nonetheless. Instead of using neural networks as one-
dimensional functions of wTx, it may be a more successful endeavour to consider superpositions of
one-dimensional functions of the two-dimensional data

0

@wTx,

s

|x|2 �
����
wT

|w|x
����
2

1

A
=

✓
wTx,

����

✓
I � w

|w| ⌦
w

|w|

◆
x

����

◆
.

The second component in the vector is a (ReLU-)Barron function. Thus, if  : R2 ! R is a Barron
function, then

u(x) =  

✓
wTx,

����

✓
I � w

|w| ⌦
w

|w|

◆
x

����

◆

is a tree-like function of depth three. In the unit ball, this modified data can be generated explicitly,
while in more complex domains, it must be learned by a deeper neural network. Whether  is in
fact a Barron function currently remains open.

12
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3.2. A counterexample on a “Barron”-domain

In the previous example, we showed that the harmonic function on a domain with Barron-function
boundary values may not be a Barron function, but might be a tree-like function of greater depth.
We may be tempted to conjecture the following: If the boundary of a domain U can locally be

written as the graph of a Barron function over a suitable hyperplane and g : @U ! R is a Barron

function, then the harmonic function u on U with boundary values g is a tree-like function. Such
domains coincide with domains with ‘Barron boundary’ considered in Caragea et al. (2020). This is
generally false, as a classical counterexample to regularity theory on nonconvex Lipschitz domains
shows.

Consider the planar domain

D✓ = {x 2 R2

: 0 < � < ✓}

where � 2 (0, 2⇡) is angular polar coordinate and 0 < ✓ < 2⇡. For k 2 N, consider

uk,✓ : D✓ ! R, uk,✓(r,�) = r
k⇡

✓

sin

✓
k⇡

✓
�

◆
.

Observe that

• ��uk,✓ = 0 for all k 2 N, 0 < ✓ < 2⇡.

• For k = 1 and ⇡ < ✓ < 2⇡, we note that uk,✓ is not Lipschitz continuous at the origin.

We can consider bounded domains eD✓ such that eD✓ \B
1

(0) = D✓ \B
1

(0) and either

1. @ eD✓ is polygonal or

2. @ eD✓ is C1-smooth away from the origin.

In either case, @ eD✓ can be locally represented as the graph of a ReLU-Barron function. Since
uk,✓ ⌘ 0 on @D✓ and uk,✓ is smooth away from the origin, we find that uk,✓ is C1-smooth on @ eD✓.
In particular there exists a Barron function gk,✓ such that gk,✓ ⌘ uk,✓ on @ eD✓. The unique solution
to the boundary value problem

(
��u = 0 in eD✓

u = gk,✓ on @ eD✓

is uk,✓ itself. Again, for k = 1 and ⇡ < ✓ < 2⇡, this harmonic function is not Lipschitz-continuous
on the closure of eD�, and thus in particular not in any tree-like function space.

As we observed in Section 2.2, classical Barron spaces as used in data-scientific applications
behave similar to C0,↵-spaces in PDE theory and another scale of C2,↵-type may be useful. Such
spaces may also describe more meaningful boundary regularity.

13
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3.3. Neural network spaces and classical function spaces

In this section, we briefly sketch some differences between specifically Barron spaces and classical
function spaces, which we expect to pose challenges in the development of a regularity theory in
spaces of neural network functions.

Classical regularity theory even in the linear case uses nonlinear coordinate transformations like
straightening the boundary and relies on the ability to piece together local solutions using a partition
of unity. There are major differences between classical function spaces and Barron spaces. Recall
that

1. if u, v 2 C2,↵, then also and u � v 2 C2,↵, and

2. if u 2 C2,↵ and a 2 C0,↵, then also a @i@ju 2 C0,↵.

Neither property holds in Barron space in dimension d � 2. The first property is important for coor-
dinate transformations and localizing arguments, the second when considering differential operators
with variable coefficients. The properties also fail in Sobolev spaces, which is why the boundary and
coefficients of a problem are typically assumed to have greater regularity than is expected of the so-
lution or its second derivatives respectively (e.g. bounded measurable coefficients, C2-boundaries,
. . . ).

While spaces of smooth functions are invariant under diffeomorphisms, Barron-space is only
invariant under linear transformations: If � : Rd ! Rd is a non-linear diffeomorphism, there exists
a hyperplane H = {wT · +b = 0} in Rd such that ��1

(H) is not a linear hyperplane. Thus the
function u(x) = �

�
wT�(x) + b) is not a Barron-function since its singular set is not straight.

Compositions of tree-like functions are tree-like functions (for deeper trees) and compositions
of flow-induced functions for deep ResNets E et al. (2019) are flow-induced functions (but flow-
induced function classes are non-linear). This is the first major difference between spaces of neural
networks and spaces of classically smooth functions which we want to point out. While in the
Sobolev setting, greater regularity is assumed, we believe that in the neural network setting, deeper
networks should be considered.

The second difference is about the ‘locality’ of the function space criterion. Note that a function
u is Ck,↵- or Hk-smooth on a domain U if and only if there exists a finite covering {U

1

, . . . , UN}
of U by open domains such that u|U

k

is in the appropriate function space. The smoothness crite-
rion therefore can be localized. Even in ostensibly non-local fractional order Sobolev spaces, the
smoothness criterion can be localized under a mild growth or decay condition.

In general, we cannot localize the Barron property in the same way. We describe a counter-
example for Barron spaces with ReLU-activation, but we expect a similar result to hold in more
general function classes. Consider a U-shaped domain in R2, e.g.

U =

�
(0, 1)⇥ (0, 3)

�
| {z }

left column

[
�
(2, 3)⇥ (0, 3)

�
| {z }

right column

[
�
(0, 3)⇥ (0, 1)

�
| {z }

horizontal bar

.

The function

f : U ! R, f(x) =

(
�(x

2

� 1) x
1

< 1.5

0 x
1

� 1.5

is in Barron space on each of the domains U
1

= {x 2 U : x
1

< 2} and U
2

= {x 2 U :

x
1

> 1}, but overall f is not in Barron space since the set of points on which a Barron function

14
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is non-differentiable is a countable union of points and lines in R2. In particular, f could not be
differentiable on (2, 3)⇥ {2}, but clearly is.
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